request Request a Protocol
ask Ask a question
Favorite

Goodness of fit was evaluated using the Tucker-Lewis index (TLI) and comparative fit index (CFI) with values >0.90 and 0.95 indicative of “adequate” and “good” fit respectively, and root mean square error of approximation (RMSEA) values lower than 0.05 as evidence of good fit (Hu and Bentler, 1999; Marsh et al., 2004). Nested models are tested when evaluating measurement invariance. Although the chi-square difference test is recommended for evaluating such models, it is sensitive to marginal differences and performs poorly against other indices such as, changes in CFI and RMSEA (Cheung and Rensvold, 2002; Chen, 2007; Little, 2013). Thus, we used changes in CFI of >0.01 and RMSEA of > 0.015, as well as overall fit of each model to determine measurement invariance (Chen, 2007; Little, 2013). Specifically, a model was invariant if at least one of the indices was within the cut-off benchmark and the overall model was a good fit. Finally, to determine the strength and the practical utility of our indirect and total effects, we evaluated the effect size of our standardized coefficients with values of 0.01, 0.09, and 0.25 representing small, medium and large effects respectively. These thresholds represent appropriate benchmarks for determining small, medium, and large effects when reporting completely standardized indirect effects (Cohen, 1988; Preacher and Kelley, 2011; Kenny, 2016).

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

0/150

tip Tips for asking effective questions

+ Description

Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.

post Post a Question
0 Q&A