Finally, we assessed type I error control based on permuted CARDIA data and used the results to infer the validity of different approaches in analyzing real CARDIA data. First, we normalized the CARDIA data by (1) rarefaction or (2) CSS. We then permuted the covariates (HBP, age, physical activity score and dietary quality score) jointly over the 531 samples to create a permuted OTU table. Such a permutation maintains the relationships among covariates, but removes the association between HBP and the normalized microbial abundance. Thus, the permuted table should have no differentially abundant taxa, and taxa with small p-values are considered false positive signals. We applied ZINQ and all the competing methods in Simulation 2 to the permuted table, then evaluated type I error control by the proportion of taxa with p-values less than 0.05. We repeated the process 50 times and summarized the type I errors by boxplots.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.