Double emulsion droplets were formed using a 1:1 volume ratio of heptane and Fluorinert FC-770 for the lensing experiments and a 1:1 volume ratio of (2:1 hexane:heptane) to FC-770 for the UV switchable droplets. For each of the two material combinations, the two fluids were combined in equal volumes and heated to just above the suspension's upper critical solution temperature Tc to allow the two liquids to form a homogeneous mixture. An aqueous surfactant solution heated above Tc was then added, and the resulting mixture was quickly shaken to form small multi-disperse droplets, which were left to cool to allow the constituent oils to phase separate. Mono-disperse droplets were formed in a glass capillary microfluidic device that consists of an outer square capillary (outer diameter, 1.5 mm, inner diameter, 1.05 mm, AIT Glass), and an inner cylindrical capillary (outer diameter, 1 mm, World Precision Instruments). The capillary assembly was pulled to form a 30 μm tip using a P-1000 Micropipette Puller (Sutter Instrument Company). Harvard Apparatus PHD Ultra syringe pumps were used to inject the homogenous mixture of fluorocarbon and hydrocarbon into the inner capillary and aqueous surfactant solution into the outer capillary. The microfluidic device and syringe pumps were maintained at a temperature above Tc using a heat lamp while the drops were formed, and the drops were then cooled below Tc to induce phase separation. We closely followed the procedures reported previously44. The droplets were found to be stable on the timescale of several days, at least. We expect them to stay stable for much longer, provided the aqueous medium and sample environment are optimized (see Supplementary Note 5 and Supplementary Fig. 6).
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.