All radioactivity, including [18F]AlF-FAPI-74, was measured using a dose calibrator. Measurement of the radiochemical purity, non-radioactive AlF-FAPI-74 (AlF-FAPI-74), and chemical impurities were carried out using an SPD-20A ultraviolet (UV) detector (λ = 264 nm) using a Shimadzu HPLC system and a Gabi-Star radioactivity detector (Elysia-Raytest, Straubenhardt, Germany). A Chromolith performance RP-18e (100 mm × 4.6 mm) as an analysis column was selected, and the mobile phase was acetonitrile (solvent A) and 0.1% trifluoroacetic acid (solvent B) in gradient mode; its condition was at 95% of solvent B from 0 to 3 min and then at 95% to 50% from 3 to 15 min. The method was calibrated using AlF-FAPI-74 as the reference standard (Linearity in the range from 0.05 to 20 µg/mL and the coefficient of determination of > 0.995 were confirmed). [18F]AlF-FAPI-74 was determined based on the retention time (RT) of the reference standard and the amount of carrier AlF-FAPI-74 calculated by calibration; the amount of all other chemical impurities was calculated based on the same calibration assuming similar extinction coefficients as AlF-FAPI-74. The set value of the column oven was 30 °C, and the flow rate was 2.0 mL/min.
Residual [18F]fluoride and [18F]AlF were analyzed using a radio-TLC analyzer, mini-Gita (Elysia-Raytest, Straubenhardt, Germany). The TLC plate used was HPTLC Silica gel 60 RP-18 and 1 v/v% phosphoric acid in saline/acetonitrile (50/50) as a developing solvent was filled in the tank for more than an h before the plate was deployed.
The residual DMSO and ethanol contents were measured using a flame ionization detector of a Shimadzu GC system. A DB-624 30 m × 0.32 mm, 1.8 µm (Agilent, Santa Clara, CA, USA) as an analysis column was selected and split injection mode (split ratio = 30:1). The carrier gas (helium) was 2 mL/min, and the column, injector, and detector temperatures were 40 °C for 5 min to 200 °C (20 °C/min) for 3 min, 200 °C, and 250 °C, respectively.
pH adjustment of buffers, etc., was performed using a pH meter with electrodes set for low volume (HORIBA, Kyoto, Japan), calibrated with pH standard buffer solution before use.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.