发布: 2013年12月05日第3卷第23期 DOI: 10.21769/BioProtoc.987 浏览次数: 27852
评审: Anonymous reviewer(s)
Abstract
During cellular respiration, nutrients are oxidized to generate energy through a mechanism called oxidative phosphorylation, which occurs in the mitochondria. During oxidative phosphorylation, the gradual degradation of molecules through the TCA cycle releases electrons from the covalent bonds that are broken. These electrons are captured by NAD+ through its reduction into NADH. Finally, NADH transports the electrons to the complexes of the electron chain in the internal membrane of mitochondria. These complexes use the energy released by the electrons to pump protons into the intermembrane space, generating an electrochemical gradient across the internal membrane of mitochondria, which provides energy for the ATP-synthase complex, ultimately producing adenosine triphosphate (ATP). We assessed the mitochondrial membrane potential (ψm) using tetramethylrhodamine methyl ester (TMRM), a cell-permeant, cationic, red fluorescent dye. To measure specifically the mitochondrial membrane potential (ψm) we quantified the fluorescence intensity before and after applying FCCP, a mitochondrial electron chain uncoupler. The difference of intensity before and after applying FCCP corresponds specifically to the mitochondrial membrane potential. We analyzed mitochondrial membrane potential (ψm) by cytofluorimetry. The ratio between the total level of signal and the signal generated after uncoupling provided a normalized value for the difference in cell size. Furthermore, to normalize for the different size of cells that we were analyzing we have analyzed TMRM in live imaging using IN Cell Analyzer, so that the level of mitochondrial membrane potential could be detected per unit of mitochondrial membrane area measured. Thus, our protocol can also be used to compare the mitochondrial membrane potential of cells that are different in size.
Materials and Reagents
Equipment
Software
Procedure
文章信息
版权信息
© 2013 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Rowe, I. and Boletta, A. (2013). Mitochondrial Transmembrane Potential (ψm) Assay Using TMRM. Bio-protocol 3(23): e987. DOI: 10.21769/BioProtoc.987.
分类
细胞生物学 > 细胞信号传导 > 呼吸
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link