发布: 2020年06月05日第10卷第11期 DOI: 10.21769/BioProtoc.3631 浏览次数: 14596
评审: Khyati Hitesh ShahEmilia KrypotouEmmanuelle BerretAnonymous reviewer(s)
Abstract
As obesity becomes a global epidemic, the metabolism research field is increasingly focusing on studying the physiological and pathological roles of adipose tissues (AT). However, extracting proteins from AT is challenging due to abundant fat content of intracellular lipid droplets. Several commercial kits for extraction of AT proteins are available, as are protocols (such as the RELi protocol as well as other protein precipitation protocols). The protocols have been introduced to improve the quality and yield of extractions, but these methods either increase the cost or involve multiple steps. Herein, we describe a detailed protocol for mouse AT protein extractions based on our daily laboratory practice. This protocol requires only very common reagents and instruments, and can be completed in 90-120 min and provides good recovery of total protein content. Thus, this protocol is an economically attractive, time-saving and efficient way to extract proteins from the AT.
Keywords: Obesity (肥胖)Background
Investigating adipose tissue (AT) to address issues related to the pathophysiology of obesity frequently involves analyzing AT proteins. However, lipid contamination in AT protein samples profoundly affects the accuracy of protein quantification, the quality of Western Blotting images, and the sample processing for downstream applications. To minimize lipid contamination, commercial kits have been developed, such as the MinuteTM Total Protein Extraction Kit for Adipose Tissues/Cultured Adipocytes (Invent Biotechnologies Inc., 2017). More comprehensive protocols aim to reduce lipid content, such as the Removal of Excess Lipids (RELi) protocol (Diaz Marin et al., 2019) and the trichloroacetic acid (TCA)-based protein precipitation method (Benabdelkamel et al., 2018). Although improved extraction quality has been demonstrated utilizing the above procedures, the disadvantages of these methods are also obvious: taking advantage of commercially available kits involves considerably higher costs; comprehensive protocols involve multiple steps, consume much more time, and might compromise total yields.
Herein, we aim to describe a detailed mouse AT protein extraction protocol that has been widely applied in our laboratory (An et al., 2017 and 2019), not only to overcome the lipid contamination problem, but also to represent an easier to handle as well as a time and cost effective way to achieve high yields of total protein extraction from mouse AT. Our protocol requires very common reagents and instruments, and is therefore budget-friendly and can be routinely performed in most laboratories, even in those new to adipose biology research. The whole process of extracting proteins from frozen adipose tissues takes approximately 90-120 min, and is therefore a time effective approach. Furthermore, this protocol ensures maximal depletion of lipid contamination by removing the lipid layer before adding detergents and repeated centrifugation after tissue lysis. Last but not least, the protocol allows to recover a total of ~2.0 mg protein from ~100 mg white adipose tissues (~4.0 mg protein from ~100 mg brown adipose tissues), which is sufficient for several rounds of Western Blot analyses as well as other applications. Thus, the protocol below is a cost effective, time-saving and efficient protocol to extract proteins from different fat pads.
Materials and Reagents
Equipment
Procedure
Notes
Recipes
Acknowledgments
This study was supported by US National Institutes of Health (NIH) grants P01-DK088761, R01-DK55758 and R01-DK099110 (P.E.S.). This protocol was derived from the original research paper published in An et al. (2017).
Competing interests
The authors declare no competing interests.
Ethics
All animal experiments conducted in the present study were approved by the Institutional Animal Care and Research Advisory Committee at The University of Texas Southwestern Medical Center (APN# 2015-101207).
References
文章信息
版权信息
An and Scherer. This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).
如何引用
Readers should cite both the Bio-protocol article and the original research article where this protocol was used:
分类
分子生物学 > 蛋白质 > 分离
生物化学 > 蛋白质 > 分离和纯化
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link