发布: 2017年04月20日第7卷第8期 DOI: 10.21769/BioProtoc.2239 浏览次数: 8850
评审: Gal HaimovichAntoine de MorreeVaibhav B Shah
Abstract
The RNA exosome complex plays a central role in RNA processing and regulated turnover. Present both in cytoplasm and nucleus, the exosome functions through associations with ribonucleases and various adapter proteins (reviewed in [Kilchert et al., 2016]). The RNA exosome-associated EXOSC10 protein is a distributive, 3’-5’ exoribonuclease. The following protocol describes an approach to monitor the ribonucleolytic activity of affinity-purified EXOSC10-containing RNA exosomes, originating from HEK-293 cells, as reported in (Domanski et al., 2016) and further detailed in the companion bio-protocol to this one (Domanski and LaCava, 2017).
Keywords: RNA exosome (RNA外显子)Background
In our previous work, we established an isogenic HEK-293 cell line expressing C-terminally 3xFLAG-tagged exosome component EXOSC10 (RRP6), under the control of a tetracycline-inducible CMV promoter (HEK-293 Flp-In T-REx – Thermo Fisher Scientific). This system permitted us to express the tagged EXOSC10 protein at a level comparable to the endogenous WT protein, and to explore exosome purification protocols using a magnetic anti-FLAG affinity medium and protein extracts derived from cryomilled cell powder (Domanski et al., 2012). Building on this, we developed protocols for further purifying RNA exosomes by rate-zonal centrifugation, using glycerol density gradients, and assaying their ribonuclease (RNase) activity (Domanski et al., 2016). EXOSC10-containing exosome fractions exhibited apparent exoribonucleolytic activity, consistent with distributive 3’-5’ hydrolysis; the same assay permitted the detection and monitoring of the processive RNase activity of affinity purified DIS3-3xFLAG ([Wasmuth and Lima, 2012] and references therein). The protocol presented here describes the RNase assay. Although this protocol presumes glycerol gradient purified EXOSC10-3xFLAG-containing exosomes as the point of entry into the assay (Domanski and LaCava, 2017), the method should be applicable to any sufficiently pure and concentrated samples.
Materials and Reagents
Note: Catalog numbers are given for most of the reagents listed below; an equivalent quality reagent from an alternative supplier can typically be substituted with comparable results. Due to the potential for artifacts introduced by contaminating RNases, care should be taken to follow best practices, such as the use of RNase-free solutions and reagents and/or using DEPC-treatment where appropriate (Farrell, 2010). Standard materials and reagents for urea-polyacrylamide gel electrophoresis are required; we use the National Diagnostics system but such gels can be prepared using standard methods (Sambrook and Russell, 2006).
Equipment
Note: Standard equipment for urea-polyacrylamide gel electrophoresis is required, as well as an imager capable of fluorescein detection (absorption λmax = 494 nm, emission λmax = 518 nm).
Procedure
文章信息
版权信息
© 2017 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Domanski, M. and LaCava, J. (2017). RNA Degradation Assay Using RNA Exosome Complexes, Affinity-purified from HEK-293 Cells. Bio-protocol 7(8): e2239. DOI: 10.21769/BioProtoc.2239.
分类
分子生物学 > RNA > RNA 降解
生物化学 > 蛋白质 > 活性
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link