发布: 2016年12月20日第6卷第24期 DOI: 10.21769/BioProtoc.2075 浏览次数: 8896
评审: Yanjie LiBelen SanzAnonymous reviewer(s)
相关实验方案
利用一个CRISPR/Cas9载体对棉囊阿舒氏酵母进行基因组编辑
Gloria Muñoz-Fernández [...] José Luis Revuelta
2020年06月20日 4113 阅读
Abstract
The ability to utilize different selectable markers for tagging or mutating multiple genes in Schizosaccharomyces pombe is hampered by the historical use of only two selectable markers, ura4+ and kanMX6; the latter conferring resistance to the antibiotic G418 (geneticin). More markers have been described recently, but introducing these into yeast cells often requires strain construction from scratch. To overcome this problem we and other groups have created transformation cassettes with flanking homologies to ura4+ and kanMX6 which enable an efficient and time-saving way to exchange markers in existing mutated or tagged fission yeast strains.
Here, we present a protocol for single-step marker switching by lithium acetate transformation in fission yeast, Schizosaccharomyces pombe. In the following we describe how to swap the ura4+ marker to a kanMX6, natMX4, or hphMX4 marker, which provide resistance against the antibiotics G418, nourseothricin (clonNAT) or hygromycin B, respectively. We also detail how to exchange any of the MX markers for nutritional markers, such as arg3+, his3+, leu1+ and ura4+.
Background
This single-step marker swap protocol for Schizosaccharomyces pombe allows for any tagged or mutated gene marked with an MX-type antibiotic marker to be swapped for a nutritional marker (cassettes containing the arg3+, his3+, leu1+, and ura4+ have been constructed) and to exchange genetic ura4+-markers for any MX-type antibiotic resistance marker (kanMX, natMX, and hphMX constructs have been tested for this study) (Lorenz et al., 2015a). Previously, this kind of approach was only feasible for MX-type antibiotic resistance markers (Sato et al., 2005; Hentges et al., 2005). Exchanging antibiotic resistance markers for each other already represented a basic set of useful genetic tools, the ura4+-to-MX as well as the arg3MX4, his3MX4, leu1MX4, and ura4MX4 marker swap cassettes expand this genetic toolbox for tagging and mutating genes in fission yeast (Lorenz et al., 2015a). The lithium acetate transformation protocol itself was described previously (Keeney and Boeke, 1994) and recently suggested modifications (http://listserver.ebi.ac.uk/pipermail/pombelist/2014/004012.html) were incorporated to provide a highly efficient procedure. Streamlining Schizosaccharomyces pombe strain construction in this way is time-saving and, therefore, will prove useful for fission yeast researchers.
Materials and Reagents
Equipment
Procedure
文章信息
版权信息
© 2016 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Brown, S. D. and Lorenz, A. (2016). Single-step Marker Switching in Schizosaccharomyces pombe Using a Lithium Acetate Transformation Protocol. Bio-protocol 6(24): e2075. DOI: 10.21769/BioProtoc.2075.
分类
微生物学 > 微生物遗传学 > 基因图谱和克隆
微生物学 > 微生物遗传学 > 转化
分子生物学 > DNA > DNA 重组
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link