发布: 2015年04月05日第5卷第7期 DOI: 10.21769/BioProtoc.1435 浏览次数: 13613
评审: Fanglian He
Abstract
Many postitive-stranded RNA viruses, such as Hepatitis C virus (HCV), highjack cellular membranes, including the Golgi, ER, mitchondria, lipid droplets, and utilize them for replication of their RNA genome or assembly of new virions. By investigating how viral proteins associate with cellular membranes we will better understand the roles of cellular membranes in the viral life cycle. Our lab has focused specifically on the role of lipid droplets and lipid-rich membranes in the life cycle of HCV. To analyze the role of lipid-rich membranes in HCV RNA replication, we utilized a membrane flotation assay based on an 10-20-30% iodixanol density gradient developed by Yeaman et al. (2001). This gradient results in a linear increase in density over almost the entire length of the gradient, and membrane particles are separated in the gradient based on their buoyant characteristics. To preserve membranes in the lysate, cells are broken mechanically in a buffer lacking detergent. The cell lysate is loaded on the bottom of the gradient, overlaid with the gradient, and membranes float up as the iodixanol gradient self-generates. The lipid content of membranes and the concentration of associated proteins will determine the separation of different membranes within the gradient. After centrifugation, fractions can be sampled from the top of the gradient and analyzed using standard SDS-PAGE and western blot analysis for proteins of interest.
Materials and Reagents
Equipment
Procedure
文章信息
版权信息
© 2015 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Vogt, D. A. and Ott, M. (2015). Membrane Flotation Assay. Bio-protocol 5(7): e1435. DOI: 10.21769/BioProtoc.1435.
分类
微生物学 > 微生物-宿主相互作用 > 离体模型
微生物学 > 微生物细胞生物学 > 细胞器分离
细胞生物学 > 细胞器分离 > 分级分离
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link