Drug Sensitivity Assay of Xanthomonas. citri subsp. citri Using REMA Plate Method

Isabel C. Silva* and Henrique Ferreira

Ciências Biológicas, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
*For correspondence: isabelcrs10@gmail.com

[Abstract] Resazurin Microtiter Assay (REMA) is a simple, rapid, reliable, sensitive, safe and cost-effective measurement of cell viability. Resazurin detects cell viability by converting from a nonfluorescent dye to the highly red fluorescent dye resorufin in response to chemical reduction of growth medium resulting from cell growth (Palomino et al., 2002). The REMA assay can be used as a fluorogenic oxidation-reduction indicator in a variety of cells, including bacteria, yeast and eukaryotes (Silva et al., 2013).

Materials and Reagents

1. Chemicals: Synthetic esters of gallic acids (Ximenes et al., 2010)
2. Bacterial strain: Wild type Xanthomonas citri subsp. citri strain 306 (Schaad et al., 2005)
3. Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, catalog number: D8418)
4. Kanamycin (Sigma-Aldrich, catalog number: K4000)
5. Luria-Bertani broth (LB) culture medium
6. Resazurin sodium salt (Sigma-Aldrich, catalog number: R7017)

Equipment

1. 96-well plate, polystyrene, with clear flat bottom wells (Greiner Bio-one, catalog number: 655101)
2. SPECTRAfluor Plus (Tecan) microfluorimeter
3. Multichannel pipetman (Eppendorf)

Procedure

A. Prepare stock solutions of chemicals (dried-powder samples) dissolving in 10% in DMSO (diluted in sterile water).
B. Add 100 µl of water to columns 1 and 12 to avoid evaporation (Table 1).
C. Dilute the stock solutions in LB medium directly in a 96-well plates using a 2-fold scheme (final volume of 100 µl per a well); after serial dilution, the most concentrated sample should have maximum 1% DMSO.

D. Cells were grown in LB medium at 30 °C under rotation (200 rpm) until OD600 0.6 (log phase).

E. Add 10 µl of bacterial inoculum (standardized to 10^5 CFU/well).
 a. Negative control: 1% DMSO dissolved in LB.
 b. Positive control: Kanamycin at 15.6 µg/ml.

Table 1. Example for setup of REMA 96-well assay plate

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>200 µl H2O</td>
<td>200 µl drug 1</td>
<td>200 µl drug 2</td>
<td>200 µl drug 3</td>
<td>200 µl drug 4</td>
<td>200 µl drug 5</td>
<td>200 µl drug 6</td>
<td>200 µl drug 7</td>
<td>200 µl drug 8</td>
<td>200 µl drug 9</td>
<td>100 µl negative control</td>
<td>200 µl H2O</td>
</tr>
<tr>
<td>B</td>
<td>200 µl H2O</td>
<td>100 µl 2A</td>
<td>100 µl 3A</td>
<td>100 µl 4A</td>
<td>100 µl 5A</td>
<td>100 µl 6A</td>
<td>100 µl 7A</td>
<td>100 µl 8A</td>
<td>100 µl 9A</td>
<td>100 µl 10A</td>
<td>100 µl negative control</td>
<td>200 µl H2O</td>
</tr>
<tr>
<td>C</td>
<td>200 µl H2O</td>
<td>100 µl 2B</td>
<td>100 µl 3B</td>
<td>100 µl 4B</td>
<td>100 µl 5B</td>
<td>100 µl 6B</td>
<td>100 µl 7B</td>
<td>100 µl 8B</td>
<td>100 µl 9B</td>
<td>100 µl 10B</td>
<td>100 µl negative control</td>
<td>200 µl H2O</td>
</tr>
<tr>
<td>D</td>
<td>200 µl H2O</td>
<td>100 µl 2C</td>
<td>100 µl 3C</td>
<td>100 µl 4C</td>
<td>100 µl 5C</td>
<td>100 µl 6C</td>
<td>100 µl 7C</td>
<td>100 µl 8C</td>
<td>100 µl 9C</td>
<td>100 µl 10C</td>
<td>100 µl negative control</td>
<td>200 µl H2O</td>
</tr>
<tr>
<td>E</td>
<td>200 µl H2O</td>
<td>100 µl 2D</td>
<td>100 µl 3D</td>
<td>100 µl 4D</td>
<td>100 µl 5D</td>
<td>100 µl 6D</td>
<td>100 µl 7D</td>
<td>100 µl 8D</td>
<td>100 µl 9D</td>
<td>100 µl 10D</td>
<td>100 µl positive control</td>
<td>200 µl H2O</td>
</tr>
<tr>
<td>F</td>
<td>200 µl H2O</td>
<td>100 µl 2E</td>
<td>100 µl 3E</td>
<td>100 µl 4E</td>
<td>100 µl 5E</td>
<td>100 µl 6E</td>
<td>100 µl 7E</td>
<td>100 µl 8E</td>
<td>100 µl 9E</td>
<td>100 µl 10E</td>
<td>100 µl positive control</td>
<td>200 µl H2O</td>
</tr>
<tr>
<td>G</td>
<td>200 µl H2O</td>
<td>100 µl 2F</td>
<td>100 µl 3F</td>
<td>100 µl 4F</td>
<td>100 µl 5F</td>
<td>100 µl 6F</td>
<td>100 µl 7F</td>
<td>100 µl 8F</td>
<td>100 µl 9F</td>
<td>100 µl 10F</td>
<td>100 µl positive control</td>
<td>200 µl H2O</td>
</tr>
<tr>
<td>H</td>
<td>200 µl H2O</td>
<td>100 µl 2G</td>
<td>100 µl 3G</td>
<td>100 µl 4G</td>
<td>100 µl 5G</td>
<td>100 µl 6G</td>
<td>100 µl 7G</td>
<td>100 µl 8G</td>
<td>100 µl 9G</td>
<td>100 µl 10G</td>
<td>100 µl positive control</td>
<td>200 µl H2O</td>
</tr>
</tbody>
</table>

F. Incubate the test plates at 30 °C for 6 h.

G. Add 15 µl of a 0.01% (w/v) resazurin solution, and incubate at 30 °C for 2 h.

H. Measure fluorescence at 530 nm (excitation) and 590 nm (emission) using a fluorescence scanning.

I. Percentage of inhibition is defined as:
 \[
 \frac{[\text{average FU negative control} - \text{average FU test}]}{\text{average FU negative control}} \times 100
 \]
 FU: Fluorescence Units
Figure 1. Example for calculation of growth inhibition

Note: Three independent experiments should be conducted, and the data is used to construct plots of chemical concentration versus cell growth inhibition in order to determine the MIC* (Figure 1).

*The minimum inhibitory concentration (MIC) is defined as the lowest concentration of the antibiotic able to inhibit the growth of 90% of organisms.

Acknowledgments

This work was supported by FAPESP research grants 2004/09173-6, 2010/05099-7, and 2011/07458-7. This protocol was adapted from a previous work by Palomino et al. (2002).

References

