Detection of Hydroxyproline O-galactoside by LC/MS
Mari Ogawa-Ohnishi and Yoshikatsu Matsubayashi*

Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
’For correspondence: matsu@bio.nagoya-u.ac.jp

[Abstract] Hydroxyproline (Hyp) O-galactosylation is a plant-specific post-translational modification found in extracellular glycoproteins such as arabinogalactan proteins (AGPs). Hyp O-galactosylation is mediated by Hyp O-galactosyltransferase (HPGT) that catalyzes the transfer of a D-galactopyranosyl residue to the hydroxyl group of Hyp residues of peptides from the sugar donor UDP-α-D-Gal. Here we describe an LC/MS-based method for the detection of Hyp O-galactoside.

Materials and Reagents

1. Cotton
2. 1 ml Micropipette tip
3. Hyp O-galactosylated peptides or proteins
4. 0.22 M Ba(OH)₂
5. 0.32 M sulfuric acid
6. 1 M NaOH
7. 1 M HCl
8. 10% aqueous ammonia
9. 80% acetonitrile containing 0.1% formic acid
10. 99.9% acetonitrile (HPLC grade) containing 0.1% formic acid
11. Water (HPLC grade) containing 0.1% formic acid

Equipment

1. Heat block
2. Centrifugal evaporator
3. BT AG 50W-X8 Resin (100-200 mg resin, H+ form) (Bio-Rad Laboratories, catalog number: 143-5441)
4. Micro centrifuge
5. Micro HPLC system (JASCO International Co., model: micro21 LC-01)
6. LCQ Deca XP-plus ESI ion-trap mass spectrometer (Thermo Fisher Scientific)
7. TSK-gel Amide-80 (3 μm) column (2.0 x 150 mm) (Tosoh Bioscience LLC, catalog number: 21865)
Procedure

A. Ba(OH)$_2$ hydrolysis
1. Dissolve galactosylated peptide in 500 μl 0.22 M Ba(OH)$_2$ in a glass vial with cap.
2. Incubate at 105 °C, 6 h.
3. Incubate on ice for 5 min.
4. Add 500 μl of 0.32 M sulfuric acid on ice.
5. Centrifuge at 20,000 x g for 5 min.

B. Partial purification of Ba(OH)$_2$ hydrolysate (Figure 1)
1. Plug a 1 ml micropipette tip with a small amount of cotton.
2. Pack 200 mg AG 50W-X8 resin into the tip column.
3. Wash the column with 1 ml of 1 M NaOH by gravity flow.
4. Wash the column with 1 ml of 1 M HCl by gravity flow.
5. Wash the column with 1 ml of water by gravity flow.
6. Apply supernatant of the Ba(OH)$_2$ hydrolysate of the galactosylated peptide to the tip column.
7. Wash the column with 1 ml of water by gravity flow.
8. Elute with 1 ml of 10% aqueous ammonia by gravity flow.
9. Evaporate the sample to dryness.
10. Dissolve in 100 μl 80% acetonitrile containing 0.1% formic acid.

Figure 1. Partial purification of Ba(OH)$_2$ hydrolysate. Supernatant of the Ba(OH)$_2$ hydrolysate of the galactosylated peptide was applied to the tip column.

C. LC/MS analysis
10 μl aliquots of the assay solution will be analyzed by LC-MS using a micro HPLC (high pressure liquid chromatography) system connected to an LCQ Deca XP-plus ESI ion-trap mass spectrometer. Chromatographic separation is performed by normal-phase HPLC on a TSK-gel Amide-80 (3 μm) column (2 x 150 mm).
1. The mobile phase is composed of HPLC grade water containing 0.1% formic acid (eluent A) and HPLC grade acetonitrile containing 0.1% formic acid (eluent B). The column temperature is maintained at 25 °C.

2. The HPLC flow rate is 100 μl/min, and the elution gradient was 60 to 40% B over 10 min.

3. Subject the HPLC eluate to coupled electrospray ionization (ESI) in the positive ionization mode.

4. MS source parameters are as follows:
 a. Capillary temperature: 200 V
 b. Capillary voltage: 42 V
 c. Source voltage: 5 kV
 d. Source current: 8.5 μA
 e. Sheath gas flow: 50
 f. Aux gas flow: 0
 g. Sweep gas flow: 0
 h. The mass range: m/z 500-2000

Figure 2. Detection of Hyp O-galactoside in Ba(OH)₂ hydrolysates of *in vitro* galactosylated AGP14 by LC-MS. The sample was analyzed by selected ion monitoring of Hyp (m/z 132.1) and Gal-Hyp (m/z 294.1). Ba(OH)₂ hydrolysis yields a diastereomeric pair of amino acids.
5. The mass spectra are obtained by selected ion monitoring in zoom scan mode (Hyp: m/z 132.1, Gal-Hyp: m/z 294.1).

Acknowledgments

This is the detailed protocol for the detection of HPGT activity described by Ogawa-Ohnishi and Matsubayashi (2015). This research was supported by a Grant-in-Aid for Scientific Research (S) from the Ministry of Education, Culture, Sports, Science, and Technology (No. 25221105).

References