Genomic DNA Extraction and Genotyping of Dictyochloropsis Green Algae Strains

Francesco Dal Grande1*, Carolina Cornejo2, Christoph Scheidegger2 and Andreas Beck3, 4*

1Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung, Frankfurt am Main, Germany; 2Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland; 3Department of Lichenology and Bryology, Botanische Staatssammlung München, München, Germany; 4GeoBio-Center, Ludwig-Maximilians Universität München, Germany

*For correspondence: francesco.dalgrande@senckenberg.de; beck@bsm.mwn.de

[Abstract] Dictyochloropsis is an ecologically important genus of free-living and symbiotic green algae. Representatives of this genus are horizontally transmitted among several fungi of the family Lobariaceae, thus forming photobiont-mediated guilds. This protocol is suitable for extracting DNA from algal cultures and lichen samples and for genotyping seven unlinked Dictyochloropsis reticulata microsatellite markers in a single PCR multiplex.

Sample preparation

DAY 1
- collect fresh tissue sample ~ 4-6 hours / 96 samples

Lyophilise overnight

Sample grinding and DNA isolation

DAY 2
- Crash lyophilised samples ~ 30 minutes
- DNA isolation with DNeasy 96 Plant Kit ~ 3 hours / 96-well plate
- DNA check via gel electrophoresis ~ 2 hours

PCR reactions and preparation of the genotyping plate

DAY 3
- preparation of the primer mix ~ 30 minutes
- preparation of the PCR mix ~ 1 hour / 96-well plate
- PCR ~ 3 hours

Preparation of the plate for genotyping

DAY 4
- preparation of the buffer ~ 30 minutes
- preparation of the plate for genotyping ~ 45 minutes / 96-well plate

Analysis

DAY 5
- analyse raw data files and export microsatellite allele tables ~ 6 hours / 96 samples

Figure 1. Schematic representation of the analysis pipeline
Materials and Reagents

1. Qiagen Type-it Microsatellite PCR kit (QIAGEN, catalog number: 206243)
2. 1x TE buffer (10 mM Tris, bring to pH 8.0 with HCl, 1 mM EDTA)
3. GelRed (Biotium, catalog number: 41003)
4. 1 kb DNA ladder (GeneRuler 1 kb DNA Ladder) (Thermo Fisher Scientific, catalog number: SM0313)
5. Nuclease-free water
6. Pure molecular biology grade ethanol (96–100%)
7. 2 ml tubes
8. DNeasy 96 Plant Kit (QIAGEN, catalog number: 69181)
9. Hi-Di™ formamide (Life Technologies, catalog number: 4311320)
10. GeneScan 500 LIZ size standard (Life Technologies, catalog number: 4322682)
11. Ice
12. Glucose (BD Biosciences, catalog number: 215510)
13. Proteose pepton (BD Biosciences, catalog number: 212230)
14. Agar (BD Biosciences, catalog number: 214883)
15. 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) (Life Technologies, Gibco®, catalog number: 11330032)
16. Laboratory wipes (e.g., KimWipes, Kimberly-Clark, catalog number: TW31KWPBX)
17. 4 mm steel balls (e.g., Spex Certiprep, catalog number: 12145950)
18. Pipette tips
19. Pipette (0.1-2 μl), pipette tips
20. Processing plate: 96-well plate (e.g., MicroAmp Optical 96-Well Reaction Plate) and 96-well plate (Septa)
21. 0.22 μm sterile polyethersulfon syringe filter (Merck Millipore, catalog number: P/N SLMP025SS)
22. Algal medium (see Recipes)
23. Algal culture medium preparation for growing Dictyochloropsis and other trebouxiophycean algal strains (see Recipes)
24. Vitamin solution (see Recipes)

Equipment

1. Multi-channel pipettes (0.1-10, 10-100, 100-1000 μl), with extended tips
2. Microcentrifuge with rotor for 2 ml tubes
3. Centrifuge for 96-well plates
4. BioRad Gel casting tray, running tray, power pack etc. (Bio-Rad Laboratories, catalog number: 164-0305)
5. Incubator (65 °C)
6. Freezer or cold room at -20 °C
7. PCR Thermal cycler
8. ABI3130/ 3130xl/3730/3730xl DNA Analyzer (Applied Biosystems)
9. Ball Mill MM 400 (Retsch®, catalog number: 20.745.0001)
10. Lyophilizer (e.g., FreeZone 4.5 Liter Benchtop Freeze Dry System, Labconco, catalog number: 7750021)

Software

1. GeneMapper® (Software v4.1, Applied Biosystems, catalog number: 4366925)

Procedure

A. Sample preparation (Day 1)
1. Take up to 10 mg fresh tissue sample (approximate wet weight) or 5 mm diameter in size of algal culture (Beck et al., 1998) / lichen thallus in 2 ml tube (see Figure 2).
2. Add 2 steel balls in each tube.
3. Cover the open tubes with soft tissue paper.
4. Cool samples in -20 °C freezer for at least 6 h.
5. Fit the tubes in the lyophilizer and lyophilize overnight.

B. Sample grinding and DNA isolation (Day 2)
1. Close the tubes.

Figure 2. Example of samples used for DNA extraction

Copyright © 2015 The Authors; exclusive licensee Bio-protocol LLC.
2. Crash the lyophilized samples using the ball mill MM 400 at 30 Hz for 30 sec without buffer at ambient temperature.

3. Spin down for a few seconds the crashed sample before proceeding with DNA isolation.

 Notes:
 a. For buffers AW1 and AW2, before using for the first time, add the appropriate amount of ethanol as indicated on the bottle to obtain a working solution.
 b. Preheat Buffer AP1 to 65 °C.

5. Elute the purified DNA from the DNeasy spin column using Buffer AE twice (2 x 50 μl).

 Note: Smaller or larger elution volumes can be used for more or less concentrated products. To ensure complete elution, 40 μl should be the minimum elution volume.

C. DNA check

1. Prepare 1% agarose gel with 1x TAE buffer. Add 0.5 μl GelRed for 100 ml gel.

2. Load 2 μl DNA.

3. Add 1 kb or 100 bp ladder for reference.

4. Run the gel electrophoresis.

5. Check DNA for quality and quantity in gel doc system (Figure 3).

![Figure 3. Example of good quality genomic DNA of *Dictyochloropsis reticulata* run on a 1% w/v agarose gel](image-url)
D. PCR reactions and preparation of the genotyping plate (Day 3)

7x Primer mix

a. First prepare 100 μM primer stocks.

b. Mix all primers according to Tables 1 and 2 to get 1ml primer-mix (sufficient for 10x 96-sample PCR plate).

Table 1. Primer sequences and labeling of the microsatellite Multiplex 1 specific to *Dictyochloropsis reticulata* (Dal Grande *et al.*, 2009; Dal Grande *et al.*, 2014)

<table>
<thead>
<tr>
<th>Algal Loci</th>
<th>GenBank</th>
<th>Primer Sequence (5'-3')</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPh1</td>
<td>FJ754261</td>
<td>F: GTCTCAGGTGACCACCTTGATTG R: GCAATGGATATGATGCTTGTTC</td>
<td>VIC</td>
</tr>
<tr>
<td>LPh2</td>
<td>FJ754262</td>
<td>F: GACAGCTGTCCAGTGATGCAC</td>
<td>FAM</td>
</tr>
<tr>
<td>LPh3</td>
<td>FJ754263</td>
<td>F: TGTCAGTAGGTGTCAATGATGT R: GAAGGCATCTTTGATATAC</td>
<td>NED</td>
</tr>
<tr>
<td>LPh4</td>
<td>FJ754264</td>
<td>F: GTGGTGGTACACAATGCTCA R: ACGACCAGTGGGATATCTA</td>
<td>NED</td>
</tr>
<tr>
<td>LPh5</td>
<td>FJ754265</td>
<td>F: TGTTGTAGAAGGTATGATGATGT R: GTATGTCTGGGGCAATCAT</td>
<td>PET</td>
</tr>
<tr>
<td>LPh6</td>
<td>FJ754266</td>
<td>F: GAATCTGCGTCCTTACAG R: AGCAACCCATTTCAACCAAC</td>
<td>FAM</td>
</tr>
<tr>
<td>LPh7</td>
<td>FJ754267</td>
<td>F: TGTCAGGGTGAACACCAA R: TATGGCTCCTCATGGCAAT</td>
<td>VIC</td>
</tr>
</tbody>
</table>

Table 2. 7x primer mix preparation

Concentration of normalized primer stocks: 100 μM (100 pmol/μl)

Each primer 20 μl (30 μl for LPh7)

TE buffer 700 μl

Total volume 1 ml

E. PCR reaction mix

1. Thaw template DNA, RNase-free water, the primer mix and the 2x Type-it Microsatellite PCR Master Mix, if stored at -20 °C.

2. Mix the solutions completely before use.

3. Prepare a reaction mix according to Table 3.

Note: The reaction mix contains all the components required for multiplex PCR except
the template DNA. Prepare a volume of reaction mix 10% greater than that required volume for the total number of reactions to be performed.

4. Mix the reaction mix thoroughly and dispense appropriate volumes into PCR tubes or plates.

Note: Mix gently by pipetting the reaction mix up and down a few times. It is not necessary to keep samples on ice during reaction setup.

| Table 3. PCR components of the microsatellite multiplex (total volume = 10 μl) |
|--------------------------------|---|
| PCR component | Multiplex 1 (10 μl) |
| Multiplex PCR Master Mix\(a\) | 5 μl (1x) |
| Primer mix | 1 μl (0.2 μM of each primer, 0.3 μM for LPh7) |
| DNA template | 1 μl (1–10 ng) |
| RNase-free water | 3 μl |

F. PCR program
1. Step 1: 95 °C for 5 min (initial activation)
2. Step 2: 95 °C for 30 sec (denaturation)
3. Step 3: 62 °C for 90 sec (annealing)
4. Step 4: 72 °C for 60 sec (extension)
5. Step 5: go to step F2, repeat 24 times
6. Step 6: 60 °C for 30 min (final extension)
7. Store PCR products in -20 °C, until further processing.

G. Preparation of the plate for genotyping (Day 4)
1. Dilute the PCR products 1:10 with RNAse-free water.
2. Combine 1 μl of diluted PCR product with a buffer containing 9 μl of a denaturing agent (Hi-Di™ Formamide) and 0.5 μl LIZ500 size standard.
3. Note: For one 96 well plate prepare buffer for 105 samples.
4. Centrifuge the plates briefly (5 sec) at 1,500 RCF.
5. Prepare table of samples.
 Note: Fill any blank sample-well with nuclease-free water.
6. Analyze on an ABI3730xl.

H. Analysis (Day 5)
Import the raw data files generated by the sequencer to the computer with GeneMapper software.

Genotyping in GeneMapper
1. Select ‘Create new project’ from the ‘File’ menu.
2. Import your samples.
3. Create marker panel and bin set.
Analysis parameters

4. Choose ‘Microsatellite default’ as table setting and ‘Microsatellite analysis method’ as the analysis method.
5. Set the panel for the 7x-primer mix.
6. Set size standard as LiZ500 and exclude the 35- and 250-bp peaks.
7. Analyze (see Figure 4).

Note: If some samples fail to match size standards, go to edit size standards and override size. If this does not solve the issue, there might be some problem with the sample or the analysis run.

Figure 4. Example of the 7x-multiplex microsatellite electropherogram for one sample of Dictyochloropsis reticulata

Representative data

1. A simple, representative example of data that indicates what type of results to expect (Table 4).

Table 4. Example of a 7x-multiplex microsatellite allele table

<table>
<thead>
<tr>
<th>Sample</th>
<th>Population</th>
<th>LPh1</th>
<th>LPh2</th>
<th>LPh3</th>
<th>LPh4</th>
<th>LPh5</th>
<th>LPh6</th>
<th>LPh7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pop1</td>
<td>262</td>
<td>157</td>
<td>108</td>
<td>191</td>
<td>143</td>
<td>121</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>Pop2</td>
<td>260</td>
<td>151</td>
<td>138</td>
<td>176</td>
<td>156</td>
<td>121</td>
<td>190</td>
</tr>
<tr>
<td>3</td>
<td>PopN</td>
<td>148</td>
<td>159</td>
<td>122</td>
<td>181</td>
<td>140</td>
<td>116</td>
<td>152</td>
</tr>
</tbody>
</table>

Note: Numbers indicate the relative size of each microsatellite allele in base pairs.
Recipes

1. Algal medium

Ingredients for the preparation of algal culture medium

a. Macronutrients (g/400 ml)

- NaCl 1 (42.7 mM)
- CaCl$_2$·2H$_2$O 1 (17.0 mM)
- KNO$_3$ 20 (495 mM)
- MgSO$_4$·7H$_2$O 3 (30.4 mM)
- (NH$_4$)$_2$HPO$_4$ 10 (189 mM)

b. Micronutrients (g/500 ml)

- KOH 15 (535 mM)
- EDTA: 25 (171 mM)
- FeSO$_4$·7H$_2$O 2.49 (17.9 mM)
- H$_3$BO$_3$ 5.52 (179 mM)
- ZnSO$_4$·7H$_2$O 4.41 (30.7 mM)
- MnCl$_2$·4H$_2$O 0.72 (7.28 mM)
- NaMoO$_4$ 0.36 (3.50 mM)
- CuSO$_4$·5H$_2$O 0.79 (6.33 mM)
- Co(NO$_3$)$_2$·6H$_2$O 0.25 (1.72 mM)

2. Algal culture medium preparation for growing *Dictyochloropsis* and other trebouxiophycean algal strains

a. For one liter of medium, take 10 ml of macronutrients and 1 ml of micronutrients, add 0.715 g HEPES buffer (final concentration 3 mM) and fill up to 1,000 ml with distilled water.

b. Adjust pH to 5.5 with HCl.

c. 20 g agar may be added.

d. Autoclave and add 1 ml sterile vitamin solution after cooling down to at least 60 °C. Sterilize the vitamin solution by filtration using a 0.22 µm sterile polyethersulfon syringe filter.

Note: To receive higher amounts of algal cells 1.5% glucose and 1% proteose pepton can be added.

3. Vitamin solution

- Thiamine 0.1 g/100 ml (3.77 mM)
- Biotin 2.5 mg/100 ml (0.10 mM)
- Vitamin B12 1.5 mg/100 ml (9.50 µM)

Acknowledgments

This study was supported by ‘LOEWE, Landes-Offensive zur Entwicklung
Wissenschaftlich-oekonomischer Exzellenz’ of Hesse’s Ministry of Higher Education, Research, and the Arts, by the Swiss National Science Foundation (projects 31003A-105830 and 31003A-127346 to C.S.), and by the German National Science Foundation (project BE3825/4-1 to A.B.).

References

