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Abstract

DNA methylation is a key chromatin modification that provides a mechanism for epigenetic inheritance. However, DNA
methylation profiles can also be used to annotate or filter plant genomes by partitioning a genome into methylated and
unmethylated regions (UMRs). UMRs comprise only a very small fraction of moderate to large plant genomes, yet these
regions are known to be highly enriched in functionally significant genomic sequences, including genes and cis-
regulatory elements. Therefore, methods to efficiently and accurately identify UMRs in plant genomes are useful for
genome annotation and functional genomics and potentially for crop improvement. In this protocol, we provide a
reproducible vignette to identify UMRSs in the maize methylome, starting from raw fastq files obtained by whole-genome
bisulfite sequencing. This method determines the average methylation per 100 bp tile of the genome and classifies tiles
as methylated and unmethylated. To support training and learning, this step-by-step guide uses a small data subset
corresponding to a 20 Mb region of the maize genome so that this analysis could be completed on a standard desktop

computer with minimal computational resources.
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Background

Groundbreaking research into epigenetics has opened up possibilities for its application to human diseases, modern
agriculture, synthetic biology, and studies of evolution. Covalent attachment of a methyl group to the 5’ carbon of
cytosine in DNA (5-methylcytosine) is generally known as DNA methylation, and 5-methylcytosine is sometimes
referred to as the fifth base [1]. DNA methylation can provide a mechanism for epigenetic inheritance of phenotypes
and, accordingly, is often referred to as an epigenetic modification. DNA methylation plays critical roles in
transposon silencing, genome stability and organisation, heterochromatin formation, gene regulation, development,
and imprinting [2]. More recently, we have demonstrated that there is great utility in identifying regions of the
genome that lack DNA methylation, referred to as unmethylated regions (UMRs) [3]. In this protocol, we provide a
step-by-step guide to identify UMRs from DNA methylation sequencing data.

There are a variety of technologies that can be used to detect and quantify the levels of DNA methylation at a
particular locus, and many of these methods can also be scaled to genome-wide profiling of the entire methylome
[4,5]. Technologies include bisulfite based, digestion based, or affinity based. Whole-genome techniques include
whole-genome bisulfite sequencing (WGBS), enzymatic methyl-seq (EM-seq), reduced representation bisulfite
sequencing (RRBS-seq), which uses bisulfite coupled with enzymatic digestions, and methyl-DNA
immunoprecipitation (MeDIP), which attracts methylation through antibody enrichment [6—9]. In addition, over the
last few years, nanopore sequencing has emerged as another alternative, allowing direct detection of DNA and RNA
methylation on long reads [10]. Importantly, the ability to identify methylation at single-base-pair resolution has
allowed specific understanding of how methylation—or the lack thereof—influences specific regions of the genome,
including regulatory regions that may be important for transcriptional changes and phenotypic variation for traits of
interest. In this protocol, we analyse WGBS sequence data; we routinely apply the same analysis pipeline to EM-
seq data, to which it is equally applicable. Together, these methyl-seq whole-genome sequencing approaches
(WGBS and EM-seq) are the current gold standard for DNA methylation profiling, as they provide a whole-genome
analysis of regions that are methylated and the types of methylation present [11,12].

The key step in WGBS involves treating genomic DNA with sodium bisulfite, which converts unmethylated
cytosines to uracils by deamination (which are converted to thiamine following PCR amplification), while 5’-
methylcytosines remain unaffected [8]. After bisulfite treatment is complete, converted DNA can be prepared for
sequencing, commonly on the Illumina platforms, allowing inference of methylation at single-base resolution by
comparison to a reference genome. Due to the cytosine conversion step in WGBS (and in EM-seq), a key
requirement in the bioinformatic analysis is to use bisulfite aware mapping software to identify the T-converted
unmethylated cytosines, which will appear as polymorphisms compared to a reference genome. Commonly used
mapping software includes BSMAP, BWA-meth, and Bismark [13,14].

In plants and animals, DNA methylation occurs in different sequence contexts including CG, CHG, and CHH (where
His A, T, or C). Studies have found that the type of methylation can correspond to different functions; for example,
CG-only methylation has been correlated with actively transcribed gene bodies, while transcriptionally silenced
regions are associated with high levels of methylation in all contexts (CHH, CHG, and CG) [15]. The output of this
analysis pipeline includes files for visualisation of each type of methylation. Recently, the research community has
demonstrated that regions that lack DNA methylation in all contexts are of particular significance [3,15-23].
Partitioning genomic regions into different categories of methylation types allows us to identify unmethylated
regions (UMRs). This approach can be very useful for annotating a genome [24] because UMRs tend to align with
regions containing functional genes and also cis-regulatory elements (CREs) [3,25]. CREs are non-coding elements
and include enhancers, promoters, and silencers, which can influence gene expression. These have the potential to
be important targets for selection and breeding and also as targets for genetic engineering. Researchers have yielded
promising results from genetic modification of CREs for tailoring gene expression without causing developmental
problems [26,27]. For example, improvements in yield in rice [28,29], maize [30], and tomato [31-33] have been
produced by gene editing non-coding cis-regulatory promoter alleles. However, efficiently identifying functional
regions of regulatory importance is challenging [3]; identification of UMRSs can narrow the search for genetic targets.
As genomic sequencing and tools for genome annotation improve, our ability to understand the functionality of the
genome is made increasingly powerful when combining knowledge of transcription binding sites, conservation of
sequences through evolution, epigenomic markers for transcriptional activity, and other emerging technologies.

In the case study outlined below, we have provided a subset of raw WGBS reads extracted from SRX5532987, a
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published study of DNA methylation in maize leaf tissue [3]. This subset of reads aligns to a small 20 Mb region of
maize chromosome 1; we provide this subset of the genome as a reference sequence for mapping. These files enable
processing this example data with minimal computational resources and could be completed on a basic laptop
computer with the appropriate software installed. The pipeline was originally optimised for maize, but it is generally
applicable to other species without modification [34]; however, users could consider modifying the thresholds in
the UMR-calling step if applied to a plant genome that has particularly unusual levels or distribution of DNA
methylation. The key steps of the workflow are outlined in Figure 1.

fastq sam bam
Trim and QC Align to the Genome Filter
trim_galore, fastqc & cutadapt BSMAP samtools, bamtools, picard, bamUtils
(remove low-quality reads) (align reads to reference genome) (remove duplicates, trim overlaps)
mC-txt bigWig bed
Methylation ratios Convert to IGV files Call UMRs
BSMAP bedGraphtoBigWig (summarise to 100bp tiles, partition
(extract methylation per cytosine) (visualise CG, methylated & unmethylated regions)

CHG & CHH methylation)

Figure 1. Overview of the workflow to identify unmethylated regions (UMRs) in a plant genome. The
bioinformatic workflow presented in the protocol includes six major steps: 1) read trimming, 2) read mapping, 3)
filtering, 4) extraction and quantification of methylation levels per cytosine, 5) data visualisation, and lastly 6)
summarisation and identification of UMRs. The output file formats are indicated above each step and the software
tools and their purpose are summarised.

Software and datasets

The required software, references, and websites for download are provided below:
trim_galore! [35], v0.6.4_dev (https://github.com/FelixKrueger/TrimGalore)
cutadapt [36], v1.8.1 (https://cutadapt.readthedocs.io/en/stable/)
fastQC [37], v0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
BSMAP [38], v2.74 (https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-232)
samtools [39], v1.16 (https://github.com/samtools/samtools)
bamtools [40], v2.4.0 (https://github.com/pezmaster3 I /bamtools/)
Java [41], v1.8.0_45 (https://www.oracle.com/java/technologies/javase/8u45-relnotes.html)
Picard, v2.9.0 (https://broadinstitute.github.io/picard/)
bamUtil [42], v1.0.13 (https://genome.sph.umich.edu/wiki/BamUtil)

. Python [43], v2.7.5 (https://www.python.org/)

. bedGraphToBigWig (UCSC; download from http://hgdownload.soe.ucsc.edu/admin/exe/)

. perl [44], v5.26.2 (https://www.perl.org/)

. IGV [45], v2.5.3 (https://software.broadinstitute.org/software/igv/)
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14. R, v4.1 (https://www.r-project.org/)

Each of the above software was run in a terminal application on a server running the software Linux but could also
be run on any personal machine running Linux or macOS.

Input data

To demonstrate the identification of UMRs from WGBS data, we have provided a small subset of reads (3,396 reads)
for analysis in paired fastq files (“B73_chrl_subset reads 1.fastq” and “B73 chrl_subset reads 2.fastq”). These
reads were extracted from SRR8738272 [3] SRA PRINAS527657, WGBS from a maize B73 seedling, V1 stage, leaf
shoot. These reads map to a section of the maize V4 genome between 80 and 100 kb on chromosome 1. We have
provided a fasta reference sequence for this portion of the maize genome for mapping the reads
(“maize_chrl_reference.fa”). This minimal example will run with minimal hardware requirements and should only
take a few seconds per step.

Users interested in analysing their own data should first perform a quality check before proceeding with this pipeline.
For example, FastQC can be used to perform basic checks of sequence data quality. Additionally, when analysing
bisulfite data, it is critical to check the conversion efficiency. This is not performed in this example for simplicity;
however, it should be performed on every dataset. This can be done either by using a spike-in unmethylated DNA
sequence such as lambda gDNA and then mapping reads to this reference sequence or, in plants, mapping to the
unmethylated chloroplast genome; good conversion rates should preferably be >99%. In this example, the WGBS
data is paired end data; however, this pipeline can equally be run on single-end data; paired end data is not a
requirement for UMR analysis.

All steps in this pipeline are run in the same folder that contains the provided input data and other required files.
The output files are written to the same folder.

Link to the input data and scripts:

- Repository: https://github.com/Bio-protocol/unmethylated-regions_ UMR-extractor-WGBS/tree/master

- Input data located in */input’

- Other required scripts in */lib®

Procedure
Case study

1. Trim the reads.

In the first step, we trim the reads for quality and remove any contaminating adapter sequences. This step
requires the software packages trim_galore!, cutadapt, and fastQC. Once these software and the fastq reads are
loaded, the code laid out below can be run in the same folder that contains the fastq files. The parameter
“phred33” instructs cutadapt to use ASCII+33 quality scores as Phred scores for quality trimming. The
parameter “clip” removes 20 base pairs from the 5’ end of both reads one and two; this is required for some
library preparation methods, for example if using the ACCEL-NGS Methyl-Seq DNA Library Kit (SWIFT
Biosciences). The parameter “o” indicates that the output will be placed in the current directory, and the paired
end fastq files are provided following the “paired” argument. Please note that the length of adapters is also
dependent on the library preparation methods.

trim galore \

--phred33 \

--clip R1 20 --clip R2 20 \

-o ./ \

--paired B73 chrl subset reads 1l.fastqg B73 chrl subset reads 2.fastqg
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For each fastq file, two new files are produced: 1) a trimming report and 2) a new fastq with trimmed reads as
shown below.

B73 chrl subset reads_1.fastq trimming report.txt
B73 chrl subset reads 1 val 1.fqg
B73 chrl subset reads_ 2.fastq trimming report.txt
B73 chrl subset reads 2 val 2.fqg

Align the reads to the genome reference.

In this step, we use BSMAP v2.74 to align the reads from the fastq file with the supplied maize genome
reference file “maize chrl_reference.fa.” The input parameter “-v 5 allows up to five mismatches, “-r 0”
reports only unique mapping pairs, and “-q 20” performs quality trimming to q20. The output file generated is
in SAM format.

bsmap \

-a B73 chrl subset reads 1 val 1.fqg \
-b B73_chrl subset reads 2 val 2.fqg \
-d maize chrl reference.fa \

-0 mapped.sam \

-v 5\

-r 0\

-q 20

Below is an example of the standard error report that should be generated from the code above; these reads
should have a paired mapping rate of approximately 97%.

BSMAP v2.74
Start at: Tue Jun 14 22:44:54 2022

Input reference file: maize chrl reference.fa (format: FASTA)

Load in 1 db segs, total size 20000 bp. 0 secs passed

total kmers: 43046721

Create seed table. 1 secs passed

max number of mismatches: 5 max gap size: 0

kmer cut-off ratio: 5e-07

max multi-hits: 100 max Ns: 5 seed size: 16 index interval: 4
quality cutoff: 20 Dbase quality char: '!'

min fragment size:28 max fragemt size:500

start from read #1 end at read #4294967295

additional alignment: T in reads => C in reference

mapping strand (read 1): ++,-+

mapping strand (read 2): +-,--

Pair-end alignment (8 threads)

Input read file #1: B73 chrl subset reads 1 val 1.fqg (format: FASTQ)
Input read file #2: B73 chrl subset reads 2 val 2.fqg (format: FASTQ)
Output file: mapped.sam (format: SAM)
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Thread #2: 3395 read pairs finished.
Total number of aligned reads:

pairs: 3277 (97%)

single a: 21 (0.62%)

single b: 16 (0.47%)

Done.

Finished at Tue Jun 14 22:44:55 2022
Total time consumed: 1 secs

Fix and sort the mapped reads.

This step requires samtools (v1.3) to perform fixing and sorting of the BSMAP output provided by the previous
step. First, we convert the files to BAM format and then name-sort them. The fixmate option of samtools can
then be used to ensure that mates have the pair’s coordinates and insert sizes (to ensure compliance with
downstream software) and mappings are again sorted and also indexed. Indexing is not strictly required but can

1 secs passed

be performed so the mapping file could be visualised in IGV.

samtools view -bS mapped.sam > mapped.bam
samtools sort -n mapped.bam -0 mapped nameSrt.bam

samtools fixmate mapped nameSrt.bam mapped nameSrt fixed.bam
samtools sort mapped nameSrt fixed.bam -o mapped sorted.bam

samtools index mapped sorted.bam

rm mapped.sam mapped nameSrt.bam mapped nameSrt fixed.bam mapped.bam

The output files generated are:

mapped sorted.bam
mapped_sorted.bam.bai

To see some summary statistics about the mapping file, we can use samtools stats.

samtools stats mapped sorted.bam | grep “SN | cut -f 2-

Some select metrics from samtools stats are shown below.

raw total sequences: 6591
reads mapped: 6591

reads mapped and paired: 6566 # paired-end technology bit set + both mates

mapped
reads unmapped: 0

reads duplicated: 0 # PCR or optical duplicate bit set

reads QC failed: O
average length: 104
maximum length: 106
average quality: 36.6
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insert size average: 156.3

Filter the mapping file.

This step removes improperly paired reads (for example, pairs that map to different chromosomes), read
duplicates, and any overlapping portion of read pairs. Removing duplicate reads and trimming overlaps is
important because these represent redundant information originating from the same DNA molecule; retaining
duplicates or overlaps can lead to biassed data.

This step requires bamtools; we use bamtools filter to remove any improperly paired or unmapped reads. The
second part of this step also requires an installation of Java to run picard for the removal of duplicate reads.

bamtools filter \

-isMapped true \

-isPaired true \
-isProperPair true \

-in mapped sorted.bam \

-out mapped sorted pairs.bam

Now, we remove duplicate reads using picard. This is an essential step in any DNA methylation analysis;
however, in this example there are no duplicate reads, so the output file should contain all the input mappings.

Jjava -jar /path/to/picard.jar MarkDuplicates \
I=mapped sorted pairs.bam \

O=mapped sorted MarkDup pairs.bam \

METRICS FILE=mapped MarkDupMetrics.txt \
ASSUME_SORTED=true \

CREATE INDEX=False \

REMOVE DUPLICATES=true

Finally, we trim any overlapping portion of paired reads so that overlapping regions are only counted once in
the analysis. Clipping is required; otherwise, cytosines in the overlapping regions are counted twice. These
cytosines represent the same biological information, measured in technical replication, so should only be
counted once.

bam clipOverlap \

--in mapped sorted MarkDup pairs.bam \

--out mapped sorted MarkDup pairs clipOverlap.bam \
-—-sStats

Below is an example of the standard error report from the clipOverlap step.

Overlap Statistics:
Number of overlapping pairs: 2922
Average # Reference Bases Overlapped: 61.3809
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Variance of Reference Bases overlapped: 727.063

Number of times orientation causes additional clipping: 176
Number of times the forward strand was clipped: 1420
Number of times the reverse strand was clipped: 1502
Completed ClipOverlap Successfully.

Extract cytosine methylation levels.

The mapping files must now be analysed to determine the level of methylation at each cytosine. A script
methratio.py is provided with the BSMAP software to extract methylation data; this requires the installation of
python and BSMAP. In addition, samtools is required, which is also provided with BSMAP; importantly, this
script requires an older version of samtools (< v1.1.18). The parameter “s” is used to direct methratio.py to the
correct version of samtools, which can be found in the installation folder of BSMAP. The code displayed first
directs python to the location of methratio.py, the parameter “o” is the output summary text file. The option “d”
is used to indicate the reference sequence file (FASTA format); in this case, “maize chrl reference.fa,” the 20

Mb subset of maize chromosome 1, which is provided. The option “u” processes only unique mappings and
pairs, while “z” reports the loci with zero methylation ratio; the parameter “r” is used to remove duplicates.

python2 ~/software/bsmap-2.74/methratio.py \
-0 methratio.txt \

-d maize chrl reference.fa \

-u -z \

-s ~/software/bsmap-2.74/samtools \

-r mapped sorted MarkDup pairs clipOverlap.bam

* “~/software/” should be replaced with the user's path to the location of the BSMAP software installation.

An example standard error report is provided below.

total 5701 valid mappings, 7121 covered cytosines, average coverage: 11.16
fold.

An example of the output text file called “methratio.txt” is provided below.

chr pos strand context ratio eff CT count C count CT count rev G count
rev_GA count CI lower CI upper
maize chrl reference 8 + ATCAT 0.000 1.00 0 1 O O 0.000 0.793

maize chrl reference 15 + TTCAC 0.000 2.00 0 2 1 1 0.000 0.658
maize chrl reference 17 + CACAA 0.000 2.00 0 2 1 1 0.000 0.658
maize chrl reference 22 + AACCA 0.000 3.00 0 3 3 3 0.000 0.562

+ ACCAC 0.000 3.00 0 3 3 3 0.000 0.562

maize chrl reference 23

Parse the output of BSMAP.

The output of methratio.py provides the sequence context of each cytosine with the two adjacent nucleotides
on either side of the cytosine (column 4 “context”). Here, we use a custom awk function to convert this output
file into a new file with the general methylation context of each cytosine (CG, CHG, or CHH) and parse
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coordinates to zero-based format "BED" type for bedtools. Subsequently, awk is used to convert to bedgraph
format (columns: chromosome, start, stop, and ratio) for downstream tools.

# awk function to parse the output of bsmap methratio.py script
awk make bed='BEGIN {OFS = FS} (NR>1) {
1f(($3=="-" && $4~/7.CG../ ) || ($3=="+" && $4~/"..CG./))
print $1, $2-1, $2, $3, "Ccc", $5, $6, $7, $8, $9, $10, $11, $12;
else if (($3=="-" && $4~/"C[AGTIG../ ) || ($3=="+" && $4~/"..C[ACTIG/))
print $1, $2-1, $2, $3, "CHG", $5, $6, $7, $8, $9, $10, $11, $12;
else  if(($3=="-"  &&  $4~/"[AGT][AGT]G../ ) | ($3=="+" &
$4~/"..C[ACT] [ACT]/))
print $1, $2-1, $2, $3, "CHH", $5, $6, $7, $8, $9, $10, $11, S12;
else
print $1, $2-1, $2, $3, "CNN", $5, $6, $7, $8, $9, $10, S$11, $12

# run the awk function
awk -F$"\\t" "Sawk make bed" \
"methratio.txt" > "BSMAP out.txt"

# output file:
maize chrl reference 7 8 + CHH 0.000 1.00 0 1 O O 0.000 0.793

maize chrl reference 14 15 + CHH 0.000 2.00 0 2 1 1 0.000 0.658
maize chrl reference 16 17 + CHH 0.000 2.00 0 2 1 1 0.000 0.658
maize chrl reference 21 22 + CHH 0.000 3.00 0 3 3 3 0.000 0.562

+ CHH 0.000 3.00 0 3 3 3 0.000 0.562

maize chrl reference 22 23

Generate bigWig files for viewing in IGV.

Now we can further process the output files into a format compatible with IGV for inspecting the data. Use
bedGraphToBigWig to make a bigWig file for IGV. The awk function filters by required columns and gives us
the average percentage of methylation. We are then able to split this into three files based on methylation context
(CG, CHH, CHG).

# awk function to filter to only the required columns and to calculate the
average percent methylation
awk make bedGraph='BEGIN {OFS = FS} (NR>1) {
print $1, $2, $3, $8/%$9*100, S5
}

v

# awk function to split the bedgraph into three files by methylation
context
awk make bedGraph context='BEGIN {OFS = FS} (NR>1) {
print $1, $2, $3, $4 > "BSMAP out "S$5".bedGraph"
}

A}

# run the two above functions
awk -F$"\\t" "$Sawk make bedGraph" \
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"BSMAP out.txt" | \
awk -F$"\\t" -v ID=$ID "Sawk make bedGraph context" -

# Example for CG context (columns: chromosome, start, end, percent-
methylation)

maize chrl reference 24 25 100

maize chrl reference 25 26 75

maize chrl reference 95 96 85.7143

maize chrl reference 96 97 64.7059

maize chrl reference 125 126 60

# Make bigWigs files for IGV per context
bedGraphToBigWig BSMAP out CG.bedGraph maize chrl reference.chrom.sizes
BSMAP out CG.bigWig

bedGraphToBigWig BSMAP out CHG.bedGraph maize chrl reference.chrom.sizes
BSMAP out CHG.bigWig

bedGraphToBigWig BSMAP out CHH.bedGraph maize chrl reference.chrom.sizes
BSMAP out CHH.bigWig

# remove intermediate files
rm -rv BSMAP out*.bedGraph

8. Summarise methylation levels into 100 bp tiles.

The output of the previous step is a text file per context with the average methylation level of each individual
cytosine. DNA methylation can either be analysed at the single-cytosine level or at a regional level. Single-
cytosine analysis can be useful for investigating rates of epimutation; however, it is generally agreed that
methylation over a contiguous region is of most biological relevance because this can affect chromatin
conformation, chromatin accessibility, and gene expression. A powerful and simple (and computationally cheap)
way to determine region-level methylation is to divide the genome into small equal-sized tiles (also sometimes
called windows or bins). We have found that 100 bp tiles are an optimal compromise between resolution and
computational efficiency. We note that there are many different software tools that provide alternative (often
more complex) algorithms for defining regional methylation and partitioning the genome into different
methylation states, for example DSS [46], methylkit [47] or MethylScore [48]. Here, we provide a simple perl
script met_context_window.pl to parse and summarise the BSMAP output into the average methylation per
context per 100 bp tile. The argument “100” sets the tile size; users can also parse the data into different sized
tiles by changing the last argument.

# summarise into 100bp tiles
perl met context window.pl BSMAP out.txt 100

# output (columns: chromosome, start, end, sites, “Cs”, “C+Ts”, percent-
methylation)

maize chrl reference 0 100 4 23 31 0.741935483870968
maize chrl reference 100 200 52 70 0.742857142857143
maize chrl reference 200 300 70 95 0.736842105263158

maize chrl reference 300 400 27 34 0.794117647058823
maize chrl reference 400 500 94 114 0.824561403508772

o N oy o
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Identify unmethylated regions.

The final step requires classifying each 100 bp tile into one of six methylation categories. This step requires R
and the R package tidyverse. The methylation categories include “missing data” (including “no data” and “no
sites”), “RdDM,” “heterochromatin,” “CG-only,” “unmethylated,” or “intermediate”. In this analysis, we are
primarily interested in using this classification to identify the UMRs; however, users might also be interested
in other types of methylation, which could be extracted from this same analysis strategy. We also suggest
removing organelles from the data before proceeding with this step; however, in this example data, the organelle
genomes have already been removed.

This analysis is performed using a custom R script that we have provided: Call-umrs.R. Regions are classified
according to the following hierarchy: tiles are classified as missing data if they have less than two cytosines in
the relevant context or if there is less than the specified coverage threshold of reads (e.g., 3-5x coverage);
RdDM if CHH methylation is greater than 15%; heterochromatin if CG and CHG methylation is 40% or greater;
CG-only if CG methylation is greater than 40%; unmethylated if CG, CHG, and CHH are less than 10%; and
intermediate if methylation is 10% or greater but less than 40%. Note that the levels of CHH methylation are
hard coded in this script, while the level of CG and CHG are specified when calling the script. We have found
these levels to be appropriate for a range of species; however, they could be adjusted if a genome has a different
or unusual distribution, for example if CHH methylation is known to be higher.

This script also requires a genome reference cytosine tile file that provides the number of cytosines that occur
in each context for each tile. We have provided this file, maize chrl_reference 100 bp _tiles.bed, for the
analysis of the 20 Mb region in this example. Users will need to create this file to analyse a different plant
genome; some reference genome files are linked in the git repository https:/github.com/Bio-
protocol/unmethylated-regions UMR-extractor-WGBS/tree/master. The format of the file is shown below
(columns: chromosome, start, end, #CG sites, #CHG sites, #CHH sites):

maize chrl reference 0 100 4 6 29
maize chrl reference 100 200 6
maize chrl reference 200 300 6
maize chrl reference 300 400 2 10 28
maize chrl reference 400 500 6

When calling the R script, the following arguments are required in this order; suggested default settings are
indicated in the brackets:

1. The reference genome cytosine tile file (“maize chrl_reference 100 bp_tiles_sites_counts.txt”).
Minimum coverage (suggestion 3x or 5x).

Minimum number of sites (suggestion 2).

Minimum percent to be considered methylated (suggestion 40%).

Maximum percent to be considered unmethylated (suggestion 10%).

aswn

R -f Call-umrs.r \
--args maize chrl reference 100bp tiles sites counts.txt \

3\

o o N
N N
_

An example of the output bed file is below (columns: chromosome, start, stop, methylation category).

maize chrl reference 2900 3000 Unmethylated
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maize chrl reference 3000 3100 Unmethylated
maize chrl reference 3100 3200 Unmethylated
maize chrl reference 3200 3300 Unmethylated
maize chrl reference 12500 12600 Unmethylated

The output of the R script is a bed file UMT5.bed that lists the coordinates of all the tiles that were categorised
as unmethylated. In addition, a file called
mC_domains_cov_3 sites 2 MR 0.4 UMR 0.1 tiles with_data.bed is also produced by this script and
provides a list of all regions that had sufficient data for UMR testing. The UMR file can now be sorted, and
then adjacent tiles are merged to yield the final unmethylated regions.

sort -kl1,1 -k2,2n UMTs.bed > UMTs sorted.bed
bedtools merge -i UMTs sorted.bed > all UMRs.bed

awk ' ($3-$2) >= 299' all UMRs.bed > UMRs.bed

The entire final output bed files are shown below (columns: chromosome, start, stop). The “all UMRs.bed”
file contains 6 UMRs; however, we highly recommend that the UMRs are further filtered to only retain UMRs
that are 300 bp or longer in size. Some unmethylated regions of 300 bp or less could be functionally important.
However, we have found that the majority of these small unmethylated regions (and there are a lot) lack
evidence of functionality; for example, 99.5% did not have accessible chromatin [3]. However, further research
is needed to develop methods to identify the potentially small minority of functionally important small (<300
bp) unmethylated regions.

# all UMRs.bed
maize chrl reference 2900 3300
maize chrl reference 12500 12800
maize chrl reference 12900 13600
maize chrl reference 13800 13900
maize chrl reference 14000 14800
maize chrl reference 15200 15300

# UMRs.bed

maize chrl reference 2900 3300
maize chrl reference 12500 12800
maize chrl reference 12900 13600
maize chrl reference 14000 14800

Results interpretation

The key output from this analysis workflow is the bed file with the coordinates of the UMRs, “UMRs.bed.” The bed
file can be used for a number of downstream analyses. The total number, size distribution, and genomic location of
UMRSs can be analysed. Most diploid genomes analysed to date have approximately 100 Mb of UMRs in total across

the whole genome, so it would be expected that the total number of UMRSs should be around this number (or greater
for polyploids). If no UMRs are detected, this would be surprising and would suggest that an error has occurred;

users are advised to step backwards in the protocol to identify which step and output file may be empty or incomplete.
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The output file of this example can also be visualised using IGV. In Figure 2 below, we show an IGV screenshot of
this UMR bed file (track labelled “UMRSs”) along with the bigWig files that display the per-cytosine methylation
(track labelled “methylation”). In the methylation track, we can see the three different coloured bars, which represent
CG, CHG, and CHH methylation in each region of the 20 kb fragment. This has been aligned to the genome
annotation for maize, so that we can see where genes are in relation to the methylation. The one gene within this 20
kb region is Zm0001d027232, which corresponds to an mRNA-hypothetical protein; as we can see, there is reduced
methylation present where the gene is located. The analysis has identified five UMRs in this gene region and a sixth
present downstream of the gene. This singular downstream UMR may represent a regulatory region containing cis-
regulatory elements that could influence expression of the nearby gene, either as enhancers or silencers. Importantly,
as highlighted in the figure, there are also other gaps in the methylation data upstream of the gene; however, rather
than being unmethylated regions, these regions lack data as can be seen by the gaps in the “tiles with data” track.

Zm00001d027232
o missing data
, , =T, 7 | 100%
methylation ||l kst MM o ANMI0 e Tkl 0 ol o L o o

UMRs Iy - — P i
UMR UMRs Pl i
T b i
I .
[ I | | ol

okb Skb 10kb 15kb 20kb

Figure 2. Example output of the unmethylated region (UMR)-calling pipeline. The output is viewed in IGV for
a 20 kb section of the maize genome on chromosome one surrounding the gene Zm00001d027232. Bars in the
“methylation” track (bigwig files) represent percent methylation (0%—100%) for each cytosine in the CG (blue),
CHG (green), and CHG (orange) context. UMRs are marked by the large red rectangles (UMRSs.bed file); there are
several UMRs overlapping the gene locus and one UMR located 9 kb downstream of the gene. Tiles with sufficient
data (coverage and minimum number of cytosines) are marked by the small grey rectangles; the dashed boxes mark
examples of gaps in the methylation data that are not UMRs because these regions are instead missing data.
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