



# RNA Interference Method for Gene Function Analysis in the Japanese Rhinoceros Beetle *Trypoxylus dichotomus*

Kazuki Sakura<sup>1, #</sup>, Shinichi Morita<sup>1, #</sup> and Teruyuki Niimi<sup>1, 2, \*</sup>

<sup>1</sup>Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan

<sup>2</sup>Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Japan

<sup>#</sup>Contributed equally to this work

\*For correspondence: <u>niimi@nibb.ac.jp</u>

# Abstract

In the Japanese rhinoceros beetle *Trypoxylus dichotomus*, various candidate genes required for a specific phenotype of interest are listed by next-generation sequencing analysis. Their functions were investigated using RNA interference (RNAi) method, the only gene function analysis tool for *T. dichotomus* developed so far. The summarized procedure for the RNAi method used for *T. dichotomus* is to synthesize double-stranded RNA (dsRNA), and inject it in larvae or pupae of *T. dichotomus*. Although some dedicated materials or equipment are generally required to inject dsRNA in insects, the advantage of the protocol described here is that it is possible to inject dsRNA in *T. dichotomus* with one syringe.

Keywords: RNA interference, Japanese rhinoceros beetle, Trypoxylus dichotomus, Gene knock-down, Double-stranded RNA

This protocol was validated in: Sci Rep (2020), DOI: 10.1038/s41598-020-75709-y

### Background

The Japanese rhinoceros beetle *Trypoxylus dichotomus* is useful from different perspectives, such as in developmental biology, morphology, ethology, ecology, biomimetics, aerodynamics, and drug discovery. For instance, Siva-Jothy (1987) revealed the feeding time of *T. dichotomus* from ecological research, Miyanoshita *et al.* (1996) isolated a new antibacterial peptide from larvae of *T. dichotomus*, Hongo (2007) clarified the relationship between horn length and body size in *T. dichotomus*, Emlen *et al.* (2012) showed that signaling through the insulin receptor is involved in *T. dichotomus* horn development, Chen *et al.* (2017) clarified that the elytron plate of *T. dichotomus* has a mechanism of high energy absorption, and Ohde *et al.* (2018) identified several horn formation genes using RNA-sequencing analysis and RNAi techniques.

Recently, the genome of *T. dichotomus* was clarified (Ogata, 2021; Morita *et al.*, 2022), and various candidate genes required for a specific phenotype of interest were listed by RNA-sequencing analysis (Ohde *et al.*, 2018; Zinna *et al.*, 2018). Furthermore, the functions of the candidate genes were investigated using RNA interference (RNAi) method, the only gene function analysis tool for *T. dichotomus* developed so far (Emlen *et al.*, 2012; Ito *et al.*, 2013; Gotoh *et al.*, 2015; Adachi *et al.*, 2018, 2020; Ohde *et al.*, 2018; Morita *et al.*, 2019).

The RNAi method for small insects generally requires specialized setups for microinjection, such as those for preparing glass capillaries, loading double-stranded RNA (dsRNA) into microcapillaries, injecting dsRNA into insects using high pressure, and manipulating the needle for injection under a stereomicroscope (*e.g.*, Kim *et al.*, 2004; Niimi *et al.*, 2005; Masumoto *et al.*, 2009; Posnien *et al.*, 2009). The RNAi method in *T. dichotomus* does not require most of the above setups, it only requires a 1-mL syringe for dsRNA injection, since the beetle's larval body size is as large as a mouse. This study provides a detailed protocol for the RNAi method in the third instar larvae of *T. dichotomus* (Figure 1). This method can also be applied to the first and second instar larvae and pupae of *T. dichotomus*.



Figure 1. Overview of RNA interference method procedure in Trypoxylus dichotomus.

### Materials and Reagents

- Filter Pipette tips (RNase/DNase-free) (Labcon, catalog numbers: 1057-965-018-9 [P1000], 1059-965-008-9 [P200], 1055-965-018-9 [P40]; and QSP, catalog number: TF102-10-Q [P2])
- 2. Disposable needles No.30 (30-gauge) (Dentronics, No.30)
- 3. 0.2 mL Flat PCR Tube 8-Cap Strips (INA OPTIKA, catalog number: 3247-00)
- 4. 1.5 mL microtubes, flat-bottom, DNase/RNase-free (Watson, catalog number: 131-415C)

![](_page_2_Picture_1.jpeg)

- 5. Plastic bottles (Hobby Club, blow container 750)
- 6. Lavender Nitrile Powder-free Exam Gloves (Kimberly-Clark, catalog number: 52818)
- 7. Styrofoam container
- 8. Aluminum foil
- 9. Third instar larvae of *Trypoxylus dichotomus* (Loiinne, third instar larva)
- 10. UltraPure<sup>TM</sup> DNase/RNase-Free Distilled Water (UPW) (Invitrogen, catalog number: 10977023)
- 11. Loading Dye (New England Biolabs, catalog number: B7024S)
- 12. 100 bp DNA Ladder (New England Biolabs, catalog number: N3231L)
- 13. TaKaRa Ex Taq (TaKaRa, catalog number: RR001B)
- 14. AmpliScribe<sup>TM</sup> T7-Flash<sup>TM</sup> Transcription Kit (Epicentre Technologies, catalog number: ASF3257)
- 15. Rnase AWAY (Thermo Fisher Scientific, catalog number: 7002)
- 16. Monarch PCR & DNA Cleanup Kit (5 µg) (BioLabs, catalog number: T1030)
- 17. Terumo Syringe 1 mL for Tuberculin Slip Tip White (Terumo, catalog number: SS-01P)
- 18. Ethanol (FUJIFILM Wako Chemicals, catalog number: 057-00456)
- 19. Phenol/Chloroform/Isoamyl alcohol (25:24:1) (PCI) (NIPPON GENE, catalog number: 311-90151)
- 20. Chloroform/Isoamyl alcohol (24:1) (CIA) (Sigma-Aldrich, catalog number: C0549)
- 21. 3 M Sodium Acetate (pH 5.2) (NIPPON GENE, catalog number: 316-90081)
- 22. Agarose S (NIPPON GENE, catalog number: 318-01195)
- 23. 10× TAE Buffer (NIPPON GENE, catalog number: 318-90301)
- 24. Ethidium Bromide Powder (SIGMA, catalog number: E7637-1G)
- 25. Humus (Dorcus Owner's shop, Osaka, Japan)
- 26. PCR Reaction mixture (see Recipes)
- 27. Solution for 1% agarose gel (see Recipes)

# Equipment

- 1. Thermal cycler (Bio-Rad Laboratories, model: T100)
- 2. Pipetman (GILSON, catalog numbers: F123602 [P1000], F123601 [P200], F123600 [P20], and F144801 [P2])
- 3. Spectrophotometer (DeNovix, model: DS-11)
- 4. Electrophoresis chamber (TaKaRa, model: AD115)
- 5. Microwave oven (Panasonic, model: NE-MS261)
- 6. Gel imaging device (ATTO, model: WSE-6100)
- 7. Centrifuge (TOMY, model: MX-307)
- 8. Heat block (Major Science, model: MD-MINI)
- 9. Vortex mixer (LMS, model: VTX-3000L)

### Procedure

#### A. Search target regions of dsRNA

- 1. Search target mRNA in RNA-seq database of *Trypoxylus dichotomus* (Ohde *et al.*, 2018; Zinna *et al.*, 2018).
- 2. Search for target regions of dsRNA.

Note: The lengths of target regions range from 150 bp to 600 bp. The target region should have low homology with any other T. dichotomus gene to avoid off-target effects. Therefore, it is desirable to not include any domains in the target design. Furthermore, the target region is checked for homology with other T. dichotomus genes, by performing a blastn search in the T. dichotomus database. dsRNA should be redesigned in other regions, if consecutive regions of 25-bp or more homological with other T. dichotomus genes are included.

3. Add the adapter sequence 5'-AACGAATTCGCCCTT-3' at the 5' end of the dsDNA, and the sequence 5'-AAGGGCGAATTCGCG-3' at the 3' end of dsDNA.

Note: The final sequence is as follows: 5'-AACGAATTCGCCCTT-[the sequence in the target region of dsRNA]-AAGGGCGAATTCGCG-3'. The adapter sequences are designed to be homologous with both ends of the pCR 4-TOPO vector (Invitrogen, catalog number: K457502).

4. Synthesize the above sequences using a dsDNA synthesis service (e.g., IDT eBlocks).

#### **B.** Synthesize dsDNA

1. Add the T7 promoter sequences at both ends of dsDNA, by performing PCR using the following primers:  $5'-\underline{taatacgactcactataggg}AACGAATTCGCCCTT-3'$  [melting temperature (Tm) = 74°C] and 5'- $\underline{taatacgactcactataggg}CGCGAATTCGCCCTT-3'$  (Tm = 78°C).

*Note: T7 promoter sequences are written in lowercase and underlined. The primers can also be used to attach T7 promoter sequences to inserts that are subcloned into the pCR 4-TOPO vector.* 

2. Perform PCR with a reaction mixture in which dsDNA (10–100 ng) synthesized in step A-4 is added as a template.

Note: The following steps constitute the PCR reaction: the initial denaturing step is 98°C for 30 s, followed by 30 cycles of denaturing at 98°C for 10 s, annealing at 55°C for 30 s, and an extension of for 60 s per 1 kb at 72°C, with an additional step of 72°C for 5 min. React about four 50  $\mu$ L-reaction mixture tubes per target gene, to obtain more than 1  $\mu$ g of dsDNA.

- 3. Collect PCR products from step B-2 into a 1.5-mL microtube (50  $\mu$ L × 4 = total of 200  $\mu$ L).
- 4. Add a sufficient amount of  $1 \times TAE$  and 1 % agarose gel into the electrophoresis chamber.
- 5. Load a 100-bp DNA Ladder into the 1 % agarose gel well.
- 6. Load 5  $\mu$ L of PCR product mixed (step B-3) with 1  $\mu$ L of 6× DNA loading dye into a well.
- 7. Perform electrophoresis on full power (100 V) for 30 min.
- 8. Using a gel imaging device, check whether the PCR product size corresponds to the expected size.
- 9. Purify the PCR product from step B-3 with Monarch PCR & DNA Cleanup Kit (5 μg), according to the manufacturer's instructions.

*Note:* dsDNA *is eluted with 100 µL of elution buffer.* 

10. Make dsDNA solution RNase-free.

Note: Lay aluminum foil on the laboratory table, and make the workplace and the experimental materials and equipment RNase-free with RNase AWAY. Wear rubber gloves.

- Add 100 μL (equal to the volume of dsDNA solution) of Phenol/Chloroform/Isoamyl alcohol (PCI) to the result from step B-9 and vortex.
- b. Centrifuge at  $13,000 \times g$  and  $25^{\circ}$ C for 15 min.
- c. Transfer upper layer to new 1.5-mL RNase-free microtube.
- d. Add 100  $\mu L$  (equal to the volume of dsDNA solution) of chloroform, and vortex.
- e. Centrifuge at 13,000  $\times$  g and 25°C for 5 min.
- f. Transfer upper layer to new 1.5-mL RNase-free microtube.
- g. Add 250 μL (2.5-fold the volume of dsDNA solution) of ethanol, and 10 μL (0.1-fold the volume of dsDNA solution) of 3 M Sodium Acetate (pH 5.2), and vortex.
- h. Centrifuge at 20,400  $\times$  g and 4°C for 15 min.
- i. Discard the supernatant.
- j. Add 250 µL of 70% ethanol solution, made with UltraPure water (UPW), and vortex.
- k. Centrifuge at 20,400  $\times$  g and 4°C for 5 min.
- l. Discard the supernatant.
- m. Open the lid of the tube, and dry for 5 min.
- n. Add <7.3  $\mu L$  of UPW.
- o. Mix 1  $\mu$ L of dsDNA solution from step B-10-n, and 9  $\mu$ L of UPW, to make a 10-fold dilution.
- p. Measure the concentration of the 10-fold diluted dsDNA solution from step B-10-o with the spectrophotometer.

#### C. Synthesize dsRNA

- 1. Synthesize dsRNA with 1 μg of dsDNA and AmpliScribe<sup>TM</sup> T7-Flash<sup>TM</sup> Transcription Kit according to the manufacturer's instructions.
- 2. Purify dsRNA

Note: Lay aluminum foil on the laboratory table, and make the workplace and the experimental materials and equipment RNase-free with RNase AWAY. Wear rubber gloves.

- a. Add 80  $\mu L$  of UPW to the result from step C-1, for a total volume of 100  $\mu L.$
- b. Add 100  $\mu$ L (equal to the volume of dsRNA solution) of PCI, and vortex for 30 s.
- c. Centrifuge at  $13,000 \times g$  and  $25^{\circ}$ C for 15 min.
- d. Transfer the upper layer to a new 1.5-mL RNase-free microtube.
- e. Add 100  $\mu$ L (equal to the volume of dsRNA solution) of chloroform, and vortex for 30 s.
- f. Centrifuge at  $13,000 \times g$  and  $25^{\circ}$ C for 5 min.
- g. Transfer the upper layer to a new 1.5-mL RNase-free microtube.
- h. Add 250 μL (2.5-fold the volume of dsRNA solution) of ethanol, and 10 μL (0.1-fold the volume of dsRNA solution) of 3 M Sodium Acetate (pH 5.2), and vortex for 30 s.
- i. Centrifuge at  $20,400 \times g$  and  $4^{\circ}$ C for 15 min.
- j. Discard the supernatant.
- k. Add 250  $\mu L$  of 70% ethanol solution made with UPW, and vortex for 30 s.
- 1. Centrifuge at  $20,400 \times g$  and  $4^{\circ}$ C for 5 min.
- m. Discard the supernatant.
- n. Open the lid of the tube, and dry for <5 min.

Note: Do not dry RNA pellets for too long.

- o. Add 20  $\mu L$  of UPW.
- p. Incubate the tube containing dsRNA solution from step C-2-o in a heat block at 65°C for 10 min.

- q. Transfer the aluminum block of the heat block into a Styrofoam<sup>™</sup> container, and cool it to room temperature, to anneal the dsRNA (Figure 2A).
- r. Take an aliquot of the annealed dsRNA, and dilute it with UPW for quantification. We routinely dilute 1  $\mu$ L of the dsRNA solution from step C-2-0 with 9  $\mu$ L of UPW.
- s. Measure the concentration of 1  $\mu$ L of 10-fold diluted dsRNA solution from step C-2-r with the spectrophotometer.
- t. Add a sufficient amount of  $1 \times TAE$  and 1% agarose gel into the electrophoresis chamber.
- u. Load 100-bp DNA Ladder into the 1% agarose gel well.
- v. Load 9  $\mu$ L of 10-fold diluted dsRNA solution from step C-2-s mixed with 2  $\mu$ L of 6× DNA loading dye into a well.
- w. Perform electrophoresis on full power (100 V) for 30 min.
- x. Check the concentration, and whether the dsRNA product size is the same as expected.
- y. Add UPW to dsRNA solution.

Note: It is helpful to adjust the final concentration of the dsRNA solution to  $5 \mu g/\mu L$ .

A B Lare lare lare 3 Lare lare lare 3 Lare lare lare 4 Lare lare lare 4 Lare 1 Lare lare 4 Lare 1 Lare

#### Figure 2. dsRNA annealing process.

A. The annealing process of dsRNA. B. Evaluation of dsRNA patterns via the annealing process. Lane 1; 100 bp DNA ladder. Lane 2; dsRNA before the annealing process looks smeared. Lane 3; dsRNA after the annealing process resembles a sharp band.

#### D. Inject dsRNA in Trypoxylus dichotomus

Note: EGFP is used as negative control.

1. Mix dsRNA (50-100 µg) and UPW.

Note: The final volume of dsRNA solution should be 50  $\mu$ L.

2. Wear rubber gloves.

Cite as: Sakura, K. et al. (2022). RNA Interference Method for Gene Function Analysis in the Japanese Rhinoceros Beetle Trypoxylus dichotomus. Bio-protocol 12(08): e4396. DOI: 10.21769/BioProtoc.4396.

z. Store at  $-30^{\circ}$ C until use.

- 3. Softly hold the larva of *T. dichotomus* (Figure 3A).
- 4. Suck dsRNA aqueous solution using a 1-mL syringe with a 30-gauge needle.
- 5. Pierce the needle at the lateral body wall of the first thoracic segment (T1) of a larva, and inject the solution into the hemocoel, just beneath the epidermis (Figure 3B and C).

Note: It is possible for bubbles to be injected in T. dichotomus to a small extent.

- 6. Place the larva in a bottle filled with humus, and incubate it at room temperature (24–28°C) until the larva develops into the pupa or the adult.
- 7. Observe the phenotype in the pupa and/or the adult.

![](_page_6_Picture_8.jpeg)

#### Figure 3. Injection of dsRNA into third instar larvae of Trypoxylus dichotomus.

A. How to hold a larva during the injection. To prevent a larva from moving its head during injection, place your thumbnail under the mandible and push the larval head upward. B. Injection of dsRNA into third instar larvae. C. A highly magnified view of the injection point in the first thoracic (T1) body segment. dsRNA is injected into the T1 of a larva. The needle should be inserted about 2 mm beneath the epidermis. The needle should be held in place for 10 sec after dsRNA injection, to prevent the backflow of dsRNA.

### Recipes

#### 1. PCR Reaction mixture

5 μL of 10× Ex taq Buffer
4 μL of dNTP Mixture (each 2.5 mM)
2 μL of Primer (10 mM) (1 μL of forward, and 1 μL of reverse)
0.5 μL of Ex Taq
38.5 μL of UPW (the amount of DNA template solution)

#### 2. Solution for 1% agarose gel

150 mL of TAE (1×) 1.5 g Agarose S

Note: Dissolve the above solution in a microwave oven. Next, add  $20 \,\mu$ L of  $10 \,\text{mg/mL}$  ethidium bromide to the solution. Allow the solution to polymerize at room temperature.

### Acknowledgments

We thank Toshiya Ando and Taro Nakamura for critical reading, and Glen Cowan for linguistic corrections, the Model Plant ResearchFacility/NIBB BioResource Center, the Data Integration and Analysis Facility/NIBB for technical assistance. This protocol was adapted from Ito *et al.* (2013), Ohde *et al.* (2018), and Morita *et al.* (2019). This work was supported by MEXT KAKENHI Grant Numbers 20H05944, 20H04933, 18H04766, 16H01452, 23128505, and 25128706 (to T. N.), and JSPS KAKENHI Grant Numbers 19K16181 and 21K15135 (to S. M.).

## **Competing interests**

No conflict of interest is declared regarding this article.

### References

- Adachi, H., Matsuda, K., Niimi, T., Inoue, Y., Kondo, S., Gotoh, H. (2018). <u>Anisotropy of cell division and epithelial</u> <u>sheet bending via apical constriction shape the complex folding pattern of beetle horn primordia</u>. *Mech Dev* 152: 32–37.
- Adachi, H., Matsuda, K., Niimi, T., Kondo, S., Gotoh, H. (2020). <u>Genetical control of 2D pattern and depth of the</u> primordial furrow that prefigures 3D shape of the rhinoceros beetle horn. *Sci Rep* 10: 18687.
- Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. and Lavine, L. C. (2012). <u>A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons</u>. *Science* 337(6096): 860–864.
- Gotoh, H., Hust, J. A., Miura, T., Niimi, T., Emlen, D. J. and Lavine, L. C. (2015). <u>The Fat/Hippo signaling pathway</u> <u>links within-disc morphogen patterning to whole-animal signals during phenotypically plastic growth in insects.</u> *Dev Dyn* 244: 1039–1045.
- Hongo, Y. (2007). Evolution of male dimorphic allometry in a population of the Japanese horned beetle *Trypoxylus* <u>dichotomus septentrionalis</u>. Behav Ecol Sociobiol 62(2): 245–253.
- Ito, Y., Harigai, A., Nakata, M., Hosoya, T., Araya, K., Oba, Y., Ito, A., Ohde, T., Yaginuma, T. and Niimi, T. (2013). <u>The role of *doublesex* in the evolution of exaggerated horns in the Japanese rhinoceros beetle</u>. *EMBO Rep* 14(6): 561–567.
- Chen, J., Zhang, X., Okabe, Y., Saito, K., Guo, Z., and Pan, L. (2017). <u>The deformation mode and strengthening</u> mechanism of compression in the beetle elytron plate. *Mater Des* 131(5): 481–486.
- Miyanoshita, A., Hara, S., Sugiyama, M., Asaoka, A., Taniai, K., Yukuhiro, F. and Yamakawa, M. (1996). <u>Isolation</u> and characterization of a new member of the insect defensin family from a beetle, *Allomyrina dichotoma*. *Biochem Biophys Res Commun* 220(3): 526–531.
- Kim, Y.-O., Park, S.-J., Balaban, R. S., Nirenberg, M. and Kim, Y. (2004). <u>A functional genomic screen for</u> <u>cardiogenic genes using RNA interference in developing *Drosophila* embryos. *Proc Nati Acad Sci* 101(1): 159– 164.</u>
- Masumoto, M., Yaginuma, T. and Niimi, T. (2009). <u>Functional analysis of Ultrabithorax in the silkworm, Bombyx</u> <u>mori, using RNAi.</u> Dev Genes Evol 219(9-10): 437–444.
- Morita, S., Ando, T., Maeno, A., Mizutani, T., Mase, M., Shigenobu, S. and Niimi, T. (2019). <u>Precise staging of beetle horn formation in *Trypoxylus dichotomus* reveals the pleiotropic roles of *doublesex* depending on the spatiotemporal developmental contexts. *PLOS Genet* 15(4): e1008063.</u>
- Morita, S., Shibata, T., Nishiyama, T., Kobayashi, Y., Yamaguchi, K., Toga, K., Ohde, T., Gotoh, H., Kojima, T., Weber, J., et al. (2022). <u>The draft genome sequence of Japanese rhinoceros beetle *Trypoxylus dichotomus.* bioRxiv https://doi.org/10.1101/2022.01.10.475740</u>
- Niimi, T., Kuwayama, H. and Yaginuma, T. (2005). <u>Larval RNAi Applied to the Analysis of Postembryonic</u> <u>Development in the Ladybird Beetle, *Harmonia axyridis*. J Insect Biotechnol Sericology 74(3): 95–102.</u>
- Ogata, N. (2021). <u>Whole-Genome Sequence of the *Trypoxylus dichotomus* Japanese rhinoceros beetle. *MicroPubl Biol* 2021.</u>
- Ohde, T., Morita, S., Shigenobu, S., Morita, J., Mizutani, T., Gotoh, H., Zinna, R. A., Nakata, M., Ito, Y., Wada,

K., *et al.* (2018). <u>Rhinoceros beetle horn development reveals deep parallels with dung beetles</u>. *PLOS Genet* 14(10): e1007651.

- Posnien, N., Schinko, J., Grossmann, D., Shippy, T. D., Konopova, B. and Bucher, G. (2009). <u>RNAi in the red flour</u> beetle (*Tribolium*). *Cold Spring Harb Protoc* 2009(8): pdb prot5256.
- Siva-Jothy, M. T. (1987). <u>Mate securing tactics and the cost of fighting in the Japanese horned beetle</u>, <u>Allomyrina</u> <u>dichotoma L. (Scarabaeidae)</u>. J Ethol 5(2): 165–172.
- Zinna, R., Emlen, D., Lavine, L. C., Johns, A., Gotoh, H., Niimi, T. and Dworkin, I. (2018). <u>Sexual dimorphism</u> <u>and heightened conditional expression in a sexually selected weapon in the Asian rhinoceros beetle</u>. *Mol Ecol* 27(24): 5049–5072.