Genomic DNA Purification (Cleanup)
Prior to library construction in NGS workflows, it may be beneficial to perform an upfront genomic DNA cleanup. For cleanup, buffer exchange, and/ or concentration of high-quality genomic DNA prior to library construction, a KAPA Pure Beads- to-sample volumetric ratio of 3X is recommended.
The detailed protocol below is an example of a 3X cleanup of genomic DNA in 100 µL. Please pay special attention to steps 1.15 and 1.16 (elution of DNA off beads). To ensure optimal recovery, these steps may be performed at an elevated temperature: 37°C for 10 min. Elution buffer may be pre-heated for this step and/or the elution performed in a thermocycler or heating block. The heated elution is not required for the cleanup, purification, or buffer exchange of other DNA types, e.g., fragmented DNA, NGS libraries or amplicons.
Ensure that the plate/tube(s) selected for the cleanup can accommodate the DNA sample plus the appropriate volume of KAPA Pure Beads, and that it is compatible with your magnet and heating device.
Cleanup of Fragmented DNA in NGS Workflows
In NGS library construction workflows, the appropriate bead-to-sample ratio depends on the point in the workflow at which the cleanup is performed (e.g., after fragmentation, adapter ligation, or library amplification), and the desired fragment sizes to be retained/excluded. KAPA Pure Beads may be employed for the effective cleanup of fragmented DNA at various stages of NGS library preparation workflows.
The size range of DNA fragments recovered during a single-sided bead-based cleanup is dependent on the volume (ratio) of KAPA Pure Beads added to the DNA sample. For fragmented DNA, NGS libraries, and amplicons, recommendations for KAPA Pure Beads-to-sample volumetric ratios based upon desired fragment lengths to be retained are provided in Table 2 (shown in Figure 1), and should be used as a guideline.
The detailed protocol outlined below is an example of a 0.8X cleanup of a 100 µL fragmented DNA sample.
Size Selection in NGS Workflows
Size selection requirements vary widely for different sequencing applications. KAPA Pure Beads may be integrated into most DNA library construction workflows, and size selection can be carried out at various points in the overall workflow (e.g., after fragmentation, post-ligation cleanup, or library amplification).
Guidelines for size selection of Illumina libraries with KAPA Pure Beads are given in Table 3, and representative traces of size-selected input DNA and libraries are given in Figure 2. These parameters are provided as guidelines only and may require additional optimization.
The following detailed protocol is an example of size selection of adapter-ligated library in a 50 µL volume. As per Table 3, a 0.6X – 0.8X size selection is used to target a final library size distribution of 250 – 450 bp. The first 0.6X cut is designed to exclude molecules > 450 bp from the library-containing supernatant retained for the second cut. The additional 0.2 volumes of KAPA Pure Beads results in the binding of all molecules > 250 bp (but < 450 bp) to the beads. DNA fragments < 250 bp are discarded with the supernatant during the bead washes.