Abstract
Homogalacturonans, the most abundant pectins of the plant cell wall, can be methylesterified at the C-6 position of the galacturonic acid residues. Demethylesterification of cell wall pectins is catalyzed by apoplastic pectin methylesterases (PMEs). Several plant developmental processes and plant-environment interactions involve PME-mediated cell wall modification, as it promotes the formation of Ca2+cross-links along the stretches of the demethylesterified galacturonic acid residues (Wolf et al., 2009; Müller et al., 2013), and thus influences the biophysical properties of plant cell walls. Here, we describe a protocol that can be used to estimate the activity of PMEs in a total soluble protein extract from plant or seed tissues. Soluble protein is extracted from the plant/seed materials, and a coupled enzyme assay is performed, according to a procedure modified from Grsic-Rausch and Rausch (2004). The methanol released from methylesterified pectins as a result of PME activity is oxidized to formaldehyde by alcohol oxidase. The formaldehyde is then used as an electron donor by formaldehyde dehydrogenase to reduce NAD+ to NADH. The formation of NADH from NAD+ is followed spectrophotometrically, and used to estimate the PME activity in the protein extract.
Materials and Reagents
Equipment
Procedure
Recipes
Acknowledgments
This work was supported by the Swiss National Science Foundation (grant 31003A_127563; to TB) and by stipends to SB from the European Molecular Biology Organisation (EMBO: ALTF 61-2010) and the Leopoldina Fellowship Programme of the National Academy of Science Leopoldina (LPDS 2009-35).
References
If you have any questions/comments about this protocol, you are highly recommended to post here. We will invite the authors of this protocol as well as some of its users to address your questions/comments. To make it easier for them to help you, you are encouraged to post your data including images for the troubleshooting.