Slow and Fast Desiccation of Single-cell Thick Fronds of Filmy Ferns

引用 收藏 提问与回复 分享您的反馈 Cited by



Plant Biology
Nov 2017



Filmy ferns can desiccate and recover after rehydration to resume photosynthesis. Slow and fast desiccation rates were compared in filmy fern fronds to determine whether structural or physiological differences may occur between desiccation rates. Slow desiccation is considered to be more similar to natural conditions experienced by plants that grow under the forest canopy. A fast desiccation rate will help to understand whether slow desiccation is important for recovery and viability.

Keywords: Desiccation tolerance (耐干性), Filmy fern (膜蕨类), Desiccation (干燥), Hymenophyllaceae (膜蕨科)


The Hymenophyllaceae is a family of epiphytic pteridophytes highly endemic to shady, constantly humid forest (Figure 1). There are some species of this filmy fern group that can survive desiccation to 20% relative water content, remain in this state for an extended period, and survive following rehydration (Figure 2) (Garcés et al., 2018) (See example timelapse, Video 1).

Figure 1. Hymenophyllum caudiculatum growing in nature under the forest canopy

Figure 2. Detached Hymenophyllum caudiculatum fronds under different conditions (Modified from Garcés, 2014). (Top) fresh detached, (middle) desiccated, and (bottom) rehydrated.

Video 1. Example of curling of Hymenophyllum caudiculatum fronds after desiccation/rehydration

Early studies of desiccation tolerance of Tortura ruralis examined slow or rapid dehydration on 500 mg fresh moss tissue (Dhindsa, 1987). Rapid desiccation was imposed by placing the tissue over activated silica gel granules in a desiccator (Relative Humidity [RH] of nearly 0%). Slow desiccation was administered by placing tissue samples over a stirred, saturated solution of ammonium nitrate contained in a desiccator (65% RH). A final weight of less than 20% original fresh weight was obtained in about 8 h of slow drying and in less than 30 min of rapid drying.

As ammonium nitrate is a hazardous and regulated substance in several countries, in this work, the slow desiccation solution was replaced by a saturated solution of potassium chloride (RH 75%).

Materials and Reagents

  1. Absorbent paper
  2. Petri dishes (Merck, catalog number: CORM3160-150X15 )
  3. Silica gel 2-5 mm (Merck, catalog number: 1077351000 )
    Note: Dry in an oven for 24 h at 60 °C.
  4. Filmy fern fronds collected from Katalapi Park, Chile (Garcés et al., 2018).
    Note: Fully expanded fronds of about 20 cm long were used in this protocol.
  5. Potassium chloride (KCl) (Merck, catalog number: 1049361000 )
  6. Saturated KCl solution (see Recipes)


  1. Glass desiccator, amber 300 mm (W.W. Grainger, model: 5YHV5 )
  2. Analytical scale (Sartorius, catalog number: BP221S )
  3. Forced air drying oven 50 L (Biobase, catalog number: BOV-T50F )


  1. Wash the detached fronds from fully hydrated plants by soaking in distilled water for five minutes, remove excess water carefully by blotting with absorbent paper.
  2. Place the fronds in a glass desiccator in the dark at room temperature, with 500 g silica gel (fast desiccation) or over 500 ml of a saturated solution of potassium chloride (KCl), 75% RH (slow desiccation) for 24 h.
  3. Weight fronds every 10 min. Weight needs to be determined very rapidly.
  4. For rehydration, place the previously desiccated fronds in Petri dishes with 10 ml distilled water in the dark for 24 h. Weight fronds every 10 min.


  1. Saturated KCl solution
    Dissolve 170 g of KCl to 500 ml distilled water


This protocol was adapted from previous work (Bewley and Oliver, 1992). This work was supported by grant #11130717 from FONDECYT. The author declares no conflicts of interest or competing interests.


  1. Bewley, J. D. and Oliver, M. J. (1992). Desiccation-tolerance in vegetative plant tissues and seeds: protein synthesis in relation to desiccation and potential role for protection and repair mechanisms. In: Water and Life: A comparative analysis of water Relationships and the organismic, cellular and molecular levels. In: Osmond, G. N. and Somero, C. B. (Eds.). Springer 141-160.
  2. Dhindsa, R. S. (1987). Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis. Plant Physiol 83(4): 816-819.
  3. Garcés Cea, M., Claverol, S., Alvear Castillo, C., Rabert Pinilla, C. and Bravo Ramirez, L. (2014). Desiccation tolerance of Hymenophyllacea filmy ferns is mediated by constitutive and non-inducible cellular mechanisms. C R Biol 337(4): 235-243.
  4. Garcés, M., Ulloa, M., Miranda, A. and Bravo, L. A. (2018). Physiological and ultrastructural characterisation of a desiccation-tolerant filmy fern, Hymenophyllum caudiculatum: Influence of translational regulation and ABA on recovery. Plant Biol (Stuttg) 20(2): 288-295.


薄膜蕨类植物可以干燥并恢复后恢复光合作用。 在膜状蕨叶中比较慢速和快速干燥速率以确定干燥速率之间是否可能发生结构或生理学差异。 慢速干燥被认为与森林冠层下生长的植物所经历的自然条件更相似。 快速干燥速率将有助于了解缓慢干燥对恢复和生存能力是否重要。

【背景】Hymenophyllaceae是一个附属蕨类植物家族,高度流行于阴暗潮湿的森林(图1)。这种薄膜蕨类植物的一些种类在干燥时可以存活至20%的相对含水量,在这种状态下保持较长时间,并且在再水化后存活(图2)(Garcés等人,, 2018年)(见例子timelapse,视频1)。

图1.自然生长在林冠下的Hymenophyllum caudiculatum

图2.在不同条件下分离的Hymenophyllum caudiculatum 叶片(2014年由Garcés修改)。(上)新鲜脱落,(中间)脱水,和(底部)再水化。
<! - video2872-1开始 - >

视频1.在干燥/补液后, Cauomotumum caudiculatum 叶片卷曲的示例
<! - video2872-1结束 - >
早期研究 Tortura ruralis 的干燥耐受性研究了500毫克新鲜苔藓组织上的缓慢或快速脱水(Dhindsa,1987)。通过将组织放置在干燥器(相对湿度[RH]接近0%)的活化硅胶颗粒上来施加快速干燥。通过将组织样品置于装有干燥器(65%RH)的搅拌的饱和硝酸铵溶液上来进行缓慢干燥。在约8小时的慢干燥和在不到30分钟的快速干燥中获得小于20%初始鲜重的最终重量。

由于硝酸铵在几个国家是危险的和受管制的物质,在这项工作中,缓慢干燥的溶液被饱和氯化钾溶液(RH 75%)代替

关键字:耐干性, 膜蕨类, 干燥, 膜蕨科


  1. 吸水纸
  2. 培养皿(默克,目录号:CORM3160-150X15)
  3. 硅胶2-5毫米(Merck,目录号:1077351000)
  4. 从智利卡塔拉皮公园收集的蕨类植物叶(Garcés等,<2018年>)。
  5. 氯化钾(KCl)(Merck,目录号:1049361000)
  6. 饱和KCl溶液(见食谱)


  1. 玻璃干燥器,琥珀色300毫米(W.W.格兰杰,型号:5YHV5)
  2. 分析尺度(Sartorius,目录号:BP221S)
  3. 强制空气干燥箱50L(Biobase,目录号:BOV-T50F)


  1. 通过在蒸馏水中浸泡五分钟将完全水合植物的分离叶片洗净,用吸水纸吸干多余水分。
  2. 将叶子置于室温黑暗中的玻璃干燥器中,用500g硅胶(快速干燥)或超过500ml氯化钾(KCl),75%RH(缓慢干燥)的饱和溶液24小时。
  3. 每10分钟重量叶状体。体重需要迅速确定。
  4. 为了补液,将以前干燥的叶子置于含10ml蒸馏水的陪替氏培养皿中24小时。


  1. 饱和KCl溶液





  1. Bewley,J.D。和Oliver,M.J。(1992)。营养植物组织和种子中的干燥耐受性:与干燥有关的蛋白质合成和保护和修复机制的潜在作用。在:水和生活:水关系和有机,细胞和分子水平的比较分析。在:Osmond,G.N.和Somero,C.B.(编辑)中。 Springer 141-160。
  2. Dhindsa,R. S.(1987)。在干旱期间的谷胱甘肽状态和蛋白质合成以及随后的 Tortula ruralis 中的补液。 Plant Physiol 83(4):816-819。
  3. GarcésCea,M.,Claverol,S.,Alvear Castillo,C.,Rabert Pinilla,C.和Bravo Ramirez,L.(2014)。 Hymenophyllacea薄膜蕨类植物的干燥耐受性由组成型和非诱导型细胞机制介导。 C Biol 337(4):235-243。
  4. Garcés,M.,Ulloa,M.,Miranda,A.和Bravo,L.A。(2018)。耐干旱的薄膜蕨类植物Hymenophyllum caudiculatum的生理和超微结构特征:翻译调控和ABA对恢复的影响。植物生物学(斯图格) 20(2):288-295。
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容, 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2018 The Authors; exclusive licensee Bio-protocol LLC.
引用:Garcés, M. (2018). Slow and Fast Desiccation of Single-cell Thick Fronds of Filmy Ferns. Bio-protocol 8(11): e2872. DOI: 10.21769/BioProtoc.2872.