Cued Rat Gambling Task

引用 收藏 提问与回复 分享您的反馈 Cited by



The Journal of Neuroscience
Jan 2016



The ability of salient cues to serve as powerful motivators has long been recognized in models of drug addiction, but little has been done to investigate their effects on complex decision making. The Cued rat Gambling Task (CrGT) is an operant behavioural task which pairs salient, audiovisual cues with the delivery of sucrose pellet rewards on complex schedules of reinforcement that involve both sugar pellet ‘wins’ and timeout penalty ‘losses’. The task was designed with the intention of providing insight into the influence of such cues on decision making in a manner that models human gambling.

Keywords: Decision making (决策), Gambling (博弈), Animal models (动物模型), Addiction (瘾), Impulsivity (冲动性), Cues (线索提示)


Although numerous rodent behavioural paradigms that capture different facets of gambling-like behaviour have recently been developed, the motivational power of cues in biasing individuals towards risky choice has so far received little attention despite the central role played by drug-paired cues in successful laboratory models of chemical dependency. Here, we describe the cued rat Gambling Task (CrGT) - a cued version of the rGT analogue of the Iowa Gambling Task (Zeeb et al., 2009). In these tasks, animals chose between four options associated with different magnitudes and frequencies of reward and punishing time-out periods. As in the Iowa Gambling Task, favoring options associated with smaller per-trial rewards but smaller losses, and avoiding the tempting ‘high-risk, high-reward’ options, maximized gains on the task. Crucially, in the CrGT, salient, audiovisual cues were paired with the delivery of sucrose pellet rewards. These cues increase in complexity with the size of the ‘win’, similar to human gambling scenarios. Recent data indicate that the addition of these reward-concurrent cues drastically increases choice of the maladaptive, risky options, thereby biasing choice against the animals’ best interests.

Materials and Reagents

  1. Male Long-Evans rats (Charles Rivers Laboratories) weighing 250-275 g upon arrival at the animal facility
    1. Initially animals should be gradually food restricted to 85% of free-feeding weight (fed ~14 g of standard rat chow per day).
    2. Water is available ad libitum in home cages.
    3. Animals are housed in pairs/trios and maintained in a climate-controlled colony room on a 12 h reverse light cycle (lights off at 8:00 AM). Temperature is kept between 19-23 °C and humidity ranges from 40%-70%.
  2. Bio-Serv Dustless Precision Pellets, 45 mg, sucrose (Bio-Serv, catalog number: F06233 )


  1. Chambers (Med Associates) (Depicted in Figure 1)
    1. Extra tall modular test chamber (Med Associates, catalog number: ENV-007-VP )
    2. Extra tall MDF sound attenuating cubicle (Med Associates, catalog number: ENV-018MD )
    3. 5 unit curved nose poke wall (Med Associates, catalog number: ENV-115A )
    4. Stainless steel grid floor (Med Associates, catalog number: ENV-005 )
    5. Hooded house light (Med Associates, catalog number: ENV-215M )
    6. Pedestal mount pellet dispenser for rat (Med Associates, catalog number: ENV-203-45 )
    7. Pellet receptacle (Med Associates, catalog number: ENV-200R2M-6.0 )
    8. Receptacle light (Med Associates, catalog number: ENV-200RL )
    9. Head entry detector for rat (Med Associates, catalog number: ENV-254-CB )
    10. Multiple tone generator (Med Associates, catalog number: ENV-223 )
    11. Cage speaker (Med Associates, catalog number: ENV-224AM )
    12. Large tabletop cabinet and power supply (Med Associates, catalog number: SG-6510D )

      Figure 1. Testing chamber. ‘A’ right side of chamber, ‘B’ left side.

  2. IBM-compatible computer running Med PC software
  3. CrGT code and training programs (5CSRT and CrGT forced choice) (freely available from Dr. Catharine Winstanley upon request)
  4. Personal protective equipment (PPE): May include (but is not limited to) scrubs, a laboratory coat, gloves, bouffant cap, ventilation mask, and shoe covers, depending on the requirements of the unit in which the work is taking place


  1. Med PC software



  1. Figure 2 depicts the time course of a typical experiment.
  2. Prior to bringing the animals into the testing room, prepare the operant chambers (ensure cleanliness, connectivity of wires and fill pellet dispensers), and the computer software.
  3. Five min prior to testing, animals are moved from the colony room to the testing room in their home cages.
  4. Each animal is subsequently moved into a chamber and undergoes testing according to their respective testing phase.
  5. Each animal always undergoes testing in the same chamber.
  6. Animals should be tested within the same 1 h daily window between 8 AM and 8 PM, during their dark cycle. Animals should be tested 5 days a week.
  7. There is a maximum of one session per day, with each session comprised of an unlimited number of trials.
  8. Each test session lasts 30 min. Animals usually take 30-40 sessions to achieve a stable, asymptotic baseline on the CrGT, depending on the animal’s cognitive abilities. Ensure that you understand how long it will take to train your animals, and that you have the time in your schedule to complete the experiment. 
  9. Animals should be fed after the training session each day, in order to maximize the motivational value of food deprivation.
  10. The size of each cohort typically ranges from 8 to 24 animals per experimental condition.

    Figure 2. The time course of a typical CrGT experiment

  1. Training stage 1: Habituation to testing chamber
    1. In each chamber, place ten reward pellets in the food well and two pellets in each of the five response holes.
    2. The house light, the food well light and all five stimulus lights (located within the response holes) should stay turned off throughout the session.
    3. The animal is allowed to freely explore the chamber for 30 min, with the pellets serving as an incentive to nose-poke the response holes and the food tray.
    4. Following the session, the rat is then returned to its home cage and is fed.
    5. Repeat steps A1-A4 until the rats reliably consume all the pellets provided within the time allotted (usually 2 sessions).

  2. Stage 2: 5-choice serial reaction time (5CSRT) training to encourage rats to nose poke at illuminated lights within the array
    1. Upon initialization of the computer program, the food tray light illuminates to signal that the first trial is available.
    2. The animal nose-pokes the food tray to initiate the trial, and the food tray light extinguishes.
    3. A 5-sec inter-trial interval (ITI) follows the nose poke in the food tray.
      1. If the animal nose-pokes one of the five response holes during the ITI, the house light illuminates and the trial is recorded as a premature response; after a five sec ‘time out’ punishment, the house light then extinguishes, the food tray light illuminates, and the chamber resets to allow subsequent trials. These premature responses provide an index of impulsive action.
    4. Following the ITI, one of the five response hole lights illuminates, chosen pseudo randomly as determined by the MedPC algorithm.
    5. The animal then has the opportunity to respond to the illuminated stimulus.
      1. Correct response: the animal nose-pokes the illuminated response hole.
      2. Incorrect response: the animal nose-pokes in one of the four response holes that are not illuminated.
      3. Omission: the animal takes no action.
    6. The animal is then rewarded or punished for its behaviour.
      1. A correct response is rewarded with the delivery of one sugar pellet into the food tray, and the food tray light illuminates to signal that the next trial is available.
      2. Incorrect responses or omissions result in the illumination of the house light and a 5-sec ‘time out’ punishment, wherein the next trial is not available; following the punishment, the house light extinguishes and the food tray light illuminates, signalling that the next trial is available.
    7. The session expires after 100 trials or 30 min, whichever comes first.
    8. If the animal registers 30 or more correct responses in a given session, the animal is considered to have passed that level of training and can move on to the next. For each subsequent training level, the task parameters are adjusted to make the task slightly more difficult, until the target parameters are attained (see Table 1 for training stages). These target parameters can usually be reached within 10 sessions.
    9. Animals progress to forced choice CrGT training when all animals pass training level 3.

      Table 1. 5CSRT training stages

  3. Stage 3: Forced choice CrGT training
    This training stage is identical to the CrGT task (see below) but only one option is presented on each trial. Roughly equal numbers of each trial type are presented each session, thereby ensuring that the rats adequately sample all four options. Rats receive 7 sessions of forced choice training before moving to the CrGT.

  4. Stage 4: The CrGT
    1. In the CrGT, animals are presented with four options (named P1-P4) they must select between. Each option is associated with a different schedule of sucrose pellet reward, audiovisual cues and time-out punishment. The physical order in which these options are presented is counter-balanced across each cohort of rats; CrGT version A presents them from left to right as P1, P4, P2, P3 while version B presents them as P4, P1, P3, P2. The contingencies associated with each option are presented in Table 2.

      Table 2. Rewards and punishments on the CrGT

    2. A task schematic is provided as Figure 3.

      Figure 3. Schematic of the CrGT, showing the sequence of events for each trial and the contingencies associated with each aperture

      1. Animals initiate each trial by making a nosepoke response at the food tray. This triggers the start of a 5 sec inter-trial interval (ITI) before the stimulus lights are turned on in the active holes (holes 1, 2, 4 and 5, running form left to right across the array). 
      2. A response at one of the illuminated holes results in all the stimulus lights being turned off and either delivery of the amount of reward or the start of the time-out ‘punishment’ period associated with that response outcome, according to the reinforcement schedules.
      3.  If the animal is rewarded on any trial, food delivery is signaled by onset of the traylight, and this traylight remains illuminated until the animal collects its reward. Responding at the food tray initiates the start of the next trial. 
      4.  If the animal is punished, a time-out period is initiated during which the stimulus light within the hole chosen on that trial flashes at a frequency of 0.5 Hz. This cues the animal to form an association between responding at that particular aperture and the ensuing period of non-reward or frustration. The traylight remains off until the end of the time-out period, whereupon the traylight is turned on to signal that the animal can initiate the next trial.
      5.  If the animal fails to make a response within 10 sec of the illumination of the four stimulus lights, the stimulus lights are turned off, the trial is scored as an omission and the traylight is illuminated to signal the beginning of the next trial. Animals are not punished for omitting trials.
      6. Premature or impulsive responses made at the array during the ITI are punished by a 5 sec time-out period. During these timeout periods, the houselight is illuminated, all other lights are turned off, and the animal is unable to register any responses. After the time-out period, the traylight is illuminated and the animal can begin a new trial. A series of different trials is depicted in Video 1.
      7. Training continues until a stable pattern of choice between the four options is observed (typically achieved within 30-40 sessions). A typical pattern of choice amongst the four options is shown in Figure 4.

        Video 1. Example trials on the CrGT. This video depicts wins and losses on each of the trial types on the CrGT.

        Figure 4. Depiction of typical baseline choice preference on the CrGT. Data derived from Barrus and Winstanley, 2016.

Data analysis

  1. Percentage variables are arcsine transformed to minimize artificial ceiling effects.
  2. Significance is set at the P ≤ 0.05 level for all data analyses.
  3. Repeated-measures ANOVAs are used to analyze data, with choice (four levels, P1-P4), session, and (if relevant) drug dose (four levels, vehicle + three doses of drug) as within-subjects factors and group as a between-subjects factor. Typically, choice, premature responses, choice latency, collection latency, trials and omissions are analysed using the latest version of SPSS (IBM), with the primary dependent variable being choice of the different options.
  4. Animals are excluded if they fail to achieve behavioral stability (defined as a null effect of session on a repeated measures ANOVA in which session + choice are within-subjects factors analysed over the most recent 3-5 sessions). Animals are also excluded if they fail to complete a sufficient number of trials per session (~20) to allow for meaningful analysis. Both of these scenarios are rare, as long as appropriate training procedures are followed.


The original uncued version of the task (the rGT) has been in continuous use since 2008, and behaviour on that version has been consistent both within the Winstanley Lab and beyond (i.e., Baarendse et al., 2013; Aleksandrova et al., 2013). All rGT data collected within the Winstanley lab between 2008 and 2012 were included in a meta-analysis that paid particular attention to the relationship between premature responding and choice behaviour on the task (Barrus et al., 2015), which should be consulted for an overview of prototypical rGT behaviour. While the CrGT is still relatively new, we expect that choice behavior will be similarly consistent between cohorts (albeit riskier, on average i.e., Barrus and Winstanley, 2016).


The rat Gambling Task, the predecessor to the CrGT, was co-developed by Dr. Fiona Zeeb (first published as Zeeb et al., 2009). The funding for the development of the CrGT was provided in the form of a Canadian Institute of Health Research (CIHR) operating grant awarded to CAW.


  1. Aleksandrova, L. R., Creed, M. C., Fletcher, P. J., Lobo, D. S., Hamani, C. and Nobrega, J. N. (2013). Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task. Behav Brain Res 245: 76-82.
  2. Baarendse, P. J., Winstanley, C. A. and Vanderschuren, L. J. (2013). Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology (Berl) 225(3): 719-731.
  3. Barrus, M. M., Hosking, J. G., Zeeb, F. D., Tremblay, M. and Winstanley, C. A. (2015). Disadvantageous decision-making on a rodent gambling task is associated with increased motor impulsivity in a population of male rats. J Psychiatry Neurosci 40(2): 108-117.
  4. Barrus, M. M. and Winstanley, C. A. (2016). Dopamine D3 receptors modulate the ability of win-paired cues to increase risky choice in a rat gambling task. J Neurosci 36(3): 785-794.
  5. Zeeb, F. D., Robbins, T. W. and Winstanley, C. A. (2009). Serotonergic and dopaminergic modulation of gambling behavior as assessed using a novel rat gambling task. Neuropsychopharmacology 34(10): 2329-2343.


突出线索作为强大动机的能力早已被药物成瘾模型所认可,但很少有人调查其对复杂决策的影响。 Cued大鼠赌博任务(CrGT)是一个操作性行为任务,它将突出的视听线索与提供糖丸“胜利”和超时罚款“损失”的复杂强化时间表上提供蔗糖丸奖励。 这项任务的目的是为了提供洞察这种线索对决策的影响,以模拟人类赌博的方式。
【背景】虽然最近已经开发了许多捕捉赌博式行为的不同方面的啮齿动物行为模式,但是尽管药物配对提示在成功的实验室模型中发挥了核心作用,但是线索在将风险偏向于风险选择方面的动机能力迄今仍未受到关注的化学依赖性。在这里,我们描述了被提名的大鼠赌博任务(CrGT) - 爱荷华赌博任务的rGT模拟的一个提示版本(Zeeb等,2009)。在这些任务中,动物选择与不同幅度和奖励频率相关的四个选项和惩罚超时期。像爱荷华州赌博任务一样,赞成与较小的每次审判奖励相关的选项,但损失较小,并避免诱人的“高风险,高回报”选项,从而最大限度地增加了这项任务的收益。至关重要的是,在CrGT中,显着的视听线索与蔗糖颗粒奖励的交付配对。这些提示的复杂性随着“赢”的大小而增加,类似于人类的赌博场景。最近的数据表明,添加这些奖励并发线索大大增加了适应不良的风险选择的选择,从而将选择偏离于动物的最佳利益。

关键字:决策, 博弈, 动物模型, 瘾, 冲动性, 线索提示


  1. 男性长伊万斯大鼠(Charles Rivers Laboratories)在抵达动物设施时体重为250-275克,
    1. 最初,动物应逐渐将食物限制在85%的自由喂养量(每天饲喂约14克标准大鼠食物)。
    2. 家庭网箱可以随意使用水。
    3. 动物饲养成对/三重奏,并在12小时反光周期(8:00 AM熄灭)后保持在气候控制的殖民地。温度保持在19-23℃之间,湿度在40%-70%之间。
  2. Bio-Serv无尘精密颗粒,45mg,蔗糖(Bio-Serv,目录号:F06233)


  1. 钱伯斯(Med Associates)(图1所示)
    1. 特高模块化测试室(Med Associates,目录号:ENV-007-VP)
    2. 超高密度MDF声音衰减柜(Med Associates,目录号:ENV-018MD)
    3. 5单位弯曲鼻孔(Med Associates,目录号:ENV-115A)
    4. 不锈钢网格(Med Associates,目录号:ENV-005)
    5. 连帽房屋灯(Med Associates,目录号:ENV-215M)
    6. 用于大鼠的基座安装颗粒分配器(Med Associates,目录号:ENV-203-45)
    7. 颗粒容器(Med Associates,目录号:ENV-200R2M-6.0)
    8. 插座灯(Med Associates,目录号:ENV-200RL)
    9. 头部入口检测器(Med Associates,目录号:ENV-254-CB)
    10. 多音调发生器(Med Associates,目录号:ENV-223)
    11. 笼式扬声器(Med Associates,目录号:ENV-224AM)
    12. 大型桌面柜和电源(Med Associates,目录号:SG-6510D)


  2. 运行Med PC软件的IBM兼容计算机
  3. CrGT代码和培训计划(5CSRT和CrGT强制选择)(根据要求可从Catharine Winstanley博士免费获取)
  4. 个人防护装备(PPE):根据工作所在单位的要求,可能包括(但不限于)磨砂,实验室外套,手套,蓬蓬帽,通风罩和鞋套。 />


  1. Med PC软件



  1. 图2描绘了典型实验的时间过程。
  2. 在将动物带入测试室之前,准备操作室(确保清洁度,电线连接和填充颗粒分配器)和计算机软件。
  3. 在测试前五分钟,动物从殖民地房间移动到家庭保护箱中的检测室。
  4. 随后将每只动物移动到室中并根据其各自的测试阶段进行测试。
  5. 每只动物总是在同一个房间里进行测试。
  6. 动物应在上午8点至晚上8点之间的同一个1小时的日间窗口中进行,在黑夜期间进行。动物应每周测试5天。
  7. 每天最多有一个会话,每个会话都包含无限次的试验。
  8. 每个测试会话持续30分钟。根据动物的认知能力,动物通常需要30-40次,以达到CrGT上稳定,渐近的基线。确保您了解训练您的动物需要多长时间,并且您有时间安排完成实验。
  9. 动物在每天的训练之后应该喂养,以最大限度地提高食物剥夺的动机价值。

  10. 每个队列的大小通常在每个实验条件下从8到24只动物


  1. 培训阶段1:测试室习惯
    1. 在每个房间里,在食物井中放置十颗奖励颗粒,在五个响应孔中的每一个中放置两颗颗粒。
    2. 房子的灯光,食物光线和所有五个刺激灯(位于响应孔内)应在整个会话期间保持关闭。
    3. 允许动物自由探索室30分钟,颗粒作为刺激反应孔和食物托盘的动机。
    4. 会议结束后,大鼠随后返回家中笼养饲料。
    5. 重复步骤A1-A4,直到老鼠可靠地消耗所分配的时间内提供的所有粒料(通常为2次)。

  2. 第2阶段:5选择连续反应时间(5CSRT)训练,以鼓励老鼠在阵列内的照明灯上鼻捅
    1. 在计算机程序初始化时,食物托盘灯亮起以表示第一次试验可用。
    2. 动物鼻子戳食物托盘开始试验,食物托盘灯熄灭。
    3. 5秒的间隔期间(ITI)跟随食物托盘中的鼻尖。
      1. 如果动物鼻子在ITI期间撞击五个响应孔中的一个,房屋灯亮起,试验被记录为过早的反应;经过五秒钟的"超时"惩罚之后,房子的灯光熄灭,食物托盘的光线照亮,房间复位以允许随后的审判。这些过早的反应提供了冲动行为的指标
    4. 在ITI之后,五个响应孔灯之一照亮,由MedPC算法确定随机选择。
    5. 那么动物就有机会对照亮的刺激作出反应。
      1. 正确的反应:动物的鼻子 - 照亮了反应孔。
      2. 反应不正确:四个反应孔中没有发光的动物鼻子捅。
      3. 遗漏:动物不采取行动。
    6. 然后,动物因其行为而被奖励或惩罚。
      1. 正确的回应是将糖粒放入食物托盘中得到回报,食物托盘灯亮起,表明下次试验可用。
      2. 错误的回应或遗漏导致了灯光的照明和5秒的超时惩罚,其中下一次审判不可用;在处罚之后,房子灯熄灭,食物托盘灯亮起,表示下次试验可用。
    7. 会议在100次试验或30分钟后过期,以先到者为准。
    8. 如果动物在给定的会话中登记了30个或更多的正确答案,那么该动物被认为已经通过了该级别的训练,并且可以进入下一个训练阶段。对于每个随后的训练水平,调整任务参数以使任务稍微困难,直到达到目标参数(参见表1的训练阶段)。通常可以在10个会话中达到这些目标参数。
    9. 当所有动物通过训练3级时,动物进入强制选择CrGT训练。

      表1. 5CSRT培训阶段

  3. 阶段3:强制选择CrGT培训

  4. 阶段4:CrGT
    1. 在CrGT中,动物呈现出四种选择(名称为P1-P4),他们必须选择它们。每个选项与蔗糖颗粒奖励,视听提示和超时惩罚的不同计划相关。这些选项的物理顺序在每个老鼠群体之间是平衡的; CrGT版本A将它们从左到右显示为P1,P4,P2,P3,而B版则将它们显示为P4,P1,P3,P2。与每个选项相关的意外情况见表2.

      表2. CrGT上的奖励和惩罚

    2. 图3提供了一个任务示意图  

      图3. CrGT的示意图,显示每个试验的事件顺序和每个孔径相关的意外事件

      1. 动物通过在食物托盘进行不适当的反应来启动每个试验。在活动孔(孔1,2,4和5,从阵列左右对齐的方式)上打开刺激灯之前,这将触发开始5秒的间隔间隔(ITI)。
      2. 根据加强时间表,在其中一个照明孔上的响应导致所有刺激灯被关闭,并且根据加强时间表,递送奖励数量或者与该响应结果相关联的超时"惩罚"时期的开始。
      3. 如果动物在任何试验中得到回报,食物传递通过托盘灯的发起发出信号,并且该托盘灯保持点亮,直到动物收集其报酬。在食物盘响应时,开始下一次试验。
      4.  如果动物受到惩罚,则开始超时期间,在该期间选择的孔内的刺激光以0.5Hz的频率闪烁。这提示动物形成了在该特定孔径响应和随后的非奖励或挫败期间的关联。托盘灯保持关闭,直到超时期结束,然后托盘灯打开,表示动物可以启动下一次试验。
      5. 如果动物在四个刺激灯的照射的10秒内没有作出响应,则刺激指示灯被关闭,试验被评分为遗漏,并且托盘灯被点亮以表示下一次试验的开始。动物不会因为省略试验而受到惩罚。
      6. 在ITI期间在阵列中作出的过早或冲动的反应将受到5秒的超时期限的惩罚。在这些超时期间,室内灯亮起,所有其他灯都关闭,动物无法注册任何响应。在超时期后,托盘灯被照亮,动物可以开始新的试验。视频1中描绘了一系列不同的试验。
      7. 训练继续进行,直到观察到四种选择之间的稳定选择模式(通常在30-40次会话中实现)。图4中显示了四种选择的典型模式。

        <! - flashid2118v166开始 - >
        视频1. CrGT上的示例试验。此视频描述了CrGT上每种试用类型的胜出和损失。
        <! - [if!IE]> - > <! - <![endif] - >

        要播放视频,您需要安装较新版本的Adobe Flash Player。

        Get Adobe Flash Player

        - ! - [if!IE]> - >
        <! - <![endif] - >
        <! - flashid2118v166结束 - >



  1. 百分比变量是反斜线变换以最小化人造天花板效应
  2. 对于所有数据分析,显着性设置在 P ≤0.05水平。
  3. 重复测量ANOVAs用于分析数据,选择(四个级别,P1-P4),会话和(如果相关)药物剂量(四个等级,车辆+三剂量的药物)作为受试者内因素,并组合为受试者之间的因素。通常,使用最新版本的SPSS(IBM)分析选择,早期反应,选择延迟,收集延迟,试验和遗漏,主要因变量是不同选项的选择。
  4. 如果动物不能达到行为稳定性(被定义为会话对重复测量方差分析的空白效应,排除会话+选择是在最近3-5次分析的受试者因素内),则排除。如果每次会话(〜20次)未能完成足够数量的试验以允许有意义的分析,动物也被排除在外。只要遵循适当的培训程序,这两种情况都是罕见的。


自2008年以来,任务(rGT)的原始版本已经不断使用,而Winstanley实验室和更高版本( ie ,Baarendse等人)中该版本的行为是一致的,2013; Aleksandrova等人,2013)。 2008年至2012年期间,Winstanley实验室收集的所有rGT数据都被纳入了一项荟萃分析,特别关注早期反应与任务选择行为之间的关系(Barrus等人,2015年) ,应参考原型rGT行为的概述。虽然CrGT还是比较新的,但我们预计,队列之间的选择行为将会相似(尽管平均风险较高,即,Barrus和Winstanley,2016)。


CrGT的前身的老鼠赌博任务由Fiona Zeeb博士共同开发(首次发布为Zeeb等人,2009年)。开发CrGT的资金是以加拿大健康研究所(CIHR)授予CAW的经营资助形式提供的。


  1. Aleksandrova,LR,Creed,MC,Fletcher,PJ,Lobo,DS,Hamani,C.and Nobrega,JN(2013)。  下丘脑核的深部脑刺激增加了大鼠赌博任务中的过早反应。 Behav Brain Res 245:76- 82.
  2. Baarendse,PJ,Winstanley,CA和Vanderschuren,LJ(2013)。  对啮齿动物赌博任务的不利决策与男性大鼠群体中增加的运动冲动有关。精神病学Neurosci 40( 2):108-117。
  3. Barrus,MM和Winstanley,CA(2016)。  多巴胺D3受体调节了胜利配对提示的能力,以增加大鼠赌博任务中的风险选择。 Neurosci 36(3):785-794。
  4. Zeeb,FD,Robbins,TW和Winstanley,CA(2009)。  使用新型大鼠赌博任务评估的血清素能和多巴胺能调节赌博行为。神经精神药理学 34(10):2329-2343。
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容, 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2017 The Authors; exclusive licensee Bio-protocol LLC.
引用: Readers should cite both the Bio-protocol article and the original research article where this protocol was used:
  1. Barrus, M. M. and Winstanley, C. A. (2017). Cued Rat Gambling Task. Bio-protocol 7(3): e2118. DOI: 10.21769/BioProtoc.2118.
  2. Barrus, M. M. and Winstanley, C. A. (2016). Dopamine D3 receptors modulate the ability of win-paired cues to increase risky choice in a rat gambling task. J Neurosci 36(3): 785-794.