Measuring Auxin Transport Capacity in Seedling Roots of Medicago truncatula

引用 收藏 提问与回复 分享您的反馈 Cited by



The Plant Cell
Aug 2015


Measurement of auxin transport capacity provides quantitative data on the physiological machinery involved in auxin transport within plants. This technique is easy to perform and gives quick results. Radiolabelled auxin (indole-3-acetic-acid) is fed into the roots of Medicago truncatula via an agar block. The resulting radioactivity from radiolabelled auxin uptake in the roots is measured with a liquid scintillation counter. Here, we describe the measurement of auxin transport capacity around the nodulation susceptible zone in young seedling roots of M. truncatula in response to rhizobia inoculation. Similar assays could be adapted in other plant species and to answer other biological questions.

Keywords: Indole-3-acetic acid (吲哚乙酸), Nodulation (结瘤), Acropetal auxin transport (向顶生长素的极性运输), Basipetal auxin transport (使用生长素极性运输)

Materials and Reagents

  1. Petri dish (150 x 15 mm) (BD, catalog number: 351058 )
    Note: Currently, it is “Corning, catalog number: 351058”.
  2. Petri dish (35 x 10 mm) (BD, catalog number: 351008 )
    Note: Currently, it is “Corning, catalog number: 351008”.
  3. SandBlaster fine 320 grit sandpaper (3M, catalog number: 70-0710-1785-2 )
  4. 50 ml Falcon tube (Greiner Bio One International GmbH, catalog number: 227261 )
  5. Waste bottle
  6. Aluminium foil (Confoil)
  7. 1.5 ml Eppendorf tube
  8. Kimwipes
  9. 6 ml scintillation vials (Pico Prias vial) (PerkinElmer, catalog number: 6000192 )
  10. Parafilm strips
  11. Medicago truncatula seeds (cultivar Jemalong A17) (SARDI)
  12. Sinorhizobium meliloti (rhizobia) culture
  13. Sodium hypochlorite solution (Bleach) (Pelikan)
  14. Sterilised distilled water
  15. Ethanol (EMD Millipore Corporation, EMSURE®)
  16. Agarose (AMRESCO, catalog number: 0710 )
  17. Emulsifier-safe, 2 x 5 L (scintillation fluid) (PerkinElmer, catalog number: 6013389 )
  18. CaCl2.2H2O (Sigma-Aldrich, catalog number: C3306 )
  19. Magnesium sulfate heptahydrate (MgSO4.7H2O) (Sigma-Aldrich, catalog number: M1880 )
  20. KH2SO4 (Sigma-Aldrich, catalog number: P0772 )
  21. Na2HPO4.2H2O (Sigma-Aldrich, catalog number: 71643 )
  22. Fe citrate (Sigma-Aldrich, Fluka®, catalog number: 44941 )
    Note: It is also named “Iron(III) citrate tribasic monohydrate” on Sigma-Aldrich website.
  23. H3BO3 (Sigma-Aldrich, catalog number: B6768 )
  24. MnSO4.4H2O (Merckmillipore, catalog number: 102786 )
  25. ZnSO4.7H2O (Sigma-Aldrich, catalog number: Z4750 )
  26. CuSO4.5H2O (Sigma-Aldrich, catalog number: C7631 )
  27. H2MoO4 (Sigma-Aldrich, catalog number: 232084 )
  28. Na2MoO4.2H2O (Sigma-Aldrich, catalog number: 331058 )
  29. Agar (TEKNOVA, catalog number: A7777 )
  30. Tritium-labelled indole-3-acetic acid (3H-IAA) blocks (pH 4.8) (American Radiolabelled Chemicals, catalog number: ART 0340 )
  31. Fahraeus media (see Recipes)
  32. 3H-IAA blocks (see Recipes)


  1. Plant growth chamber, set at 25 °C, 16/8 h day/night cycle with 150 μmol m−2 s−1 light intensity (Thermo Fisher Scientific)
  2. Scintillation counter (PerkinElmer, model: Tri-Carb 2800TR )
  3. Scintillation racks (PerkinElmer)
  4. Pipettes (Eppendorf AG)
  5. Scissors (ECKERSLEY’S)
  6. Fine forceps (Dumont and Fils) (D'OUTILS DUMONT S.A.)
  7. Rotating shaker (SeouLin Bioscience, model: MyLabTM Intelli-Mixer )
  8. Platform shaker (Eppendorf AG, New BrunswickTM, model: INNOVA 2100 )
  9. Microwave


  1. Medicago truncatula cultivar Jemalong A17 seeds (or other Medicago cultivars as required) are germinated and grown in vitro on 150 mm diameter Petri dishes containing Fåhraeus media, as described in Ng et al. (2015) (Figure 1).
    1. Seeds are first scarified on sandpaper and surface-sterilized in 6% (w/v) sodium hypochlorite for 10 min on a rotating shaker, then rinsed with sterile distilled water at least five times.
    2. After incubation for 6 h in sterile distilled water in a Falcon tube on a rotating shaker, seeds are spread onto Petri dishes containing Fåhraeus agar, placed at 4 °C for 48 h to synchronize germination, and subsequently germinated at 20 °C overnight.
    3. Seedlings of ~1 cm length are placed onto fresh Petri dishes containing Fåhraeus agar at seven seedlings per plate in a sterile laminar flow hood, and grown for four days at 25 °C with a 16 h day, 8 h night cycle and light intensity of 150 μmol m−2 s−1 in a plant growth chamber. Petri dishes are arranged vertically so that roots will grow along the surface of the media, with a black cardboard interspersed between plates to prevent the roots from being exposed to light. Discard any seedlings that have grown underneath the agar surface.

      Figure 1. Growth and inoculation of Medicago truncatula seedlings with rhizobia. Multiple seedlings are grown on a single Petri dish. A fine drop of rhizobia culture (~1 μl; OD600 = 0.1) is inoculated onto the nodulation-susceptible zone on each root (inset).

  2. If the effect of rhizobial infection is of interest, four-day-old M. truncatula seedlings are spot-inoculated with Sinorhizobium meliloti (S. meliloti) (rhizobia) at the nodulation susceptible zone, i.e. ~3 mm above the root tip, in the zone of the root where root hairs are just emerging and still elongating (Figure 1).
    1. Prior to inoculation, the inoculation spot is marked on the underside of the Petri dish. Note that root and agar surface need to be dry to avoid movement of the inoculum. When comparing different experiments, it is important to carry out the inoculations and auxin transport measurements at the same time of the day, as we have observed changes in total auxin transport at different times during the light/dark period.
    2. If the auxin transport assay is adapted for other biological questions, other treatments of the seedlings can be included at this step. For example:
      1. The effect of mycorrhizal infection of the roots. In this case, the roots are first locally infected with mycorrhizal spores prior to auxin transport measurement.
      2. The effect of natural or synthetic auxin transport modulators on auxin transport, such as flavonoids or 1-N-naphthylphthalamic acid, respectively. In this case, the roots can be treated with the chemicals in the presence or absence of rhizobia.
      3. In addition to acropetal auxin transport measurement described here, basipetal auxin transport (from the root tip towards the root base) could also be investigated with a slight modification to the protocol described here [please refer to Supplemental Figure 2 in Ng et al. (2015)].
    3. While the inoculation with rhizobia described here has been found to be optimal at a 24 h incubation time, other treatments could be adapted for shorter or longer incubation times as required, as long as the seedlings do not outgrow the length of the Petri dishes, to ensure the root tip area remains healthy and straight.
  3. 3H-IAA agarose blocks are prepared in a Petri dish (35 x 10 mm) and cut into blocks with dimensions of 2 mm x 2 mm x 2 mm with a sterile scalpel (Figure 2A and B).

    Figure 2. Preparation of radiolabelled auxin blocks and the auxin transport assay. A. A 35 x 10 mm Petri dish and a sterile scalpel for preparation of the radiolabelled auxin blocks. B. A scalpel is used to cut the cooled radiolabelled auxin agar into smaller blocks (2 mm x 2 mm x 2 mm). C. Root segments are arranged on a parafilm strip and a small radiolabelled auxin agar block is placed tightly against the cut end of each root segment using a fine forceps. D. After incubation, samples are collected in individual scintillation vials containing scintillation fluid.

  4. To investigate auxin transport capacity at 24 h post-S. meliloti inoculation, at 18 h post-inoculation, the roots are excised 8 mm above the inoculation spot. The root segments (containing the root tip) are placed on a parafilm strip. A block of 3H-IAA agarose is positioned at the cut end of each root segment (Figure 2C). It is important to check that the cut surface of the agar block is tightly in contact with the cut root surface to ensure that there is no gap that could prevent auxin transport into the root segment. The root segments are left to incubate for 6 h in the dark at room temperature.
  5. 6 ml scintillation vials containing 2 ml of scintillation fluid each are prepared (Figure 2D).
  6. The first 4 mm of the root from the 3H-IAA agarose block is discarded. The adjacent 4 mm segment is cut with a clean scalpel and then placed in a vial containing scintillation fluid using a clean forceps, making sure the root segment is fully immersed in the fluid. The final 4 mm segment (with the excess root tip discarded) is placed in a separate scintillation vial containing scintillation fluid.
    1. The forceps should be regularly rinsed in ethanol and dried with Kimwipe tissues to prevent carryover of radioactivity between samples.
    2. The vials are covered with lids and incubated on a platform shaker at room temperature overnight to extract the radiolabelled auxin into the scintillation fluid.
  7. Vials containing the root samples are arranged in scintillation racks.
    1. Three vials with scintillation fluid but without root segments are included at the start of the run; these are used to subtract the averaged background.
    2. Samples are analysed in a TriCarb 2800TR scintillation counter for 1 min each using the default parameters for 3H radionuclide decay.
  8. Results (in counts per min) are exported as a spreadsheet and analysed. An example data set is shown in Table 1. If necessary, outliers need to be removed, i.e., those readings that lie below the average background, for example the sample with a reading of ‘9’ in the list below. These outliers are typically due to one of the agar blocks containing the radiolabelled auxin losing contact with the root.

    Table 1. An example data set of Medicago truncatula roots treated with water (mock treatment) or the synthetic auxin transport inhibitor 1-N-naphthylphthalamic acid (NPA), both in the presence of rhizobia. Data are presented as counts/min.

  9. These data sets typically result in normally-distributed data that can be analyzed using a Student’s t-test (when comparing two treatments) or analysis of variance (when comparing several treatments). We suggest a large number of seedlings (at least 15-20) for each treatment as there is some variation in auxin transport between seedlings.
  10. Ensure all radioactive waste is discarded in special radiation waste bins.


  1. Fåhraeus media (per litre)
    132 mg CaCl2·2H2O
    120 mg MgSO4·7H2O
    100 mg KH2SO4
    75 mg Na2HPO4·2H2O
    5 mg Fe Citrate
    2.86 mg H3BO3
    2.03 mg MnSO4·4H2O
    220 μg ZnSO4·7H2O
    80 μg CuSO4·5H2O
    90 μg H2MoO4
    121 μg Na2MoO4·2H2O
    10 g agar (Gelita J3 grade)
    Autoclave, cool, pour into Petri dishes (~60-70 ml in each plate)
    Stock solutions are stored at 4 °C and can be used for up to one year.
    In our experience, Fåhraeus media can be stored for up to six months at 4 °C.
  2. 3H-IAA blocks
    1. Melt 1% water agarose in a microwave, adjusted to pH 4.8, and cool to around 50 °C.
    2. Prepare 7.5 μl 3H-IAA stock by diluting in 20 μl ethanol in an Eppendorf tube. Keep dark by wrapping the tube in aluminium foil.
    3. Carefully mix diluted 3H-IAA mixture into 2 ml melted 1% water agarose in a Petri dish (35 x 10 mm). It is important to achieve a similar amount of radiolabelled auxin in each block. This should be tested by immersing a number of individual blocks from different areas of the plate in scintillation fluid, incubating on a shaker overnight and measuring radioactivity.
    4. Allow mixture to air dry for 15 min.
    5. Cut into 2 mm x 2 mm x 2 mm blocks with a scalpel, using a printed grid as a template for block size.
    6. Keep blocks cool (4 °C) and in the dark until needed by wrapping the plate in aluminium foil. Always prepare blocks on the same day as carrying out the transport assays. Discard unused blocks into radiation waste.


This protocol was adapted from Lewis and Muday (2009), van Noorden et al. (2006), Wasson et al. (2006), Plet et al. (2011) and was performed by Ng et al. (2015). This work was supported by an Australian Research Council Future Fellowship awarded to Ulrike Mathesius (FT100100669).


  1. Lewis, D. R. and Muday, G. K. (2009). Measurement of auxin transport in Arabidopsis thaliana. Nat Protoc 4(4): 437-451.
  2. Ng, J. L., Hassan, S., Truong, T. T., Hocart, C. H., Laffont, C., Frugier, F. and Mathesius, U. (2015). Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell 27(8): 2210-2226.
  3. Plet, J., Wasson, A., Federico, A., Le Signor, C., Baker, D., Mathesius, U., Crespi, M. and Frugier, F. (2011). MtCRE1-dependent cytokinin signalling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 65(4): 622-633.
  4. van Noorden, G. E., Ross, J. J., Reid, J. B., Rolfe, B. G. and Mathesius, U. (2006). Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiol 140(4): 1494-1506.
  5. Wasson, A. P., Pellerone, F. I. and Mathesius, U. (2006). Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18(7): 1617-1629.


生长素运输能力的测量提供了涉及植物中生长素运输的生理机制的定量数据。 这种技术很容易执行,并给出快速的结果。 将放射性标记的生长素(吲哚-3-乙酸)通过琼脂块加入到Medic藜苜蓿的根部。 使用液体闪烁计数器测量根中放射性标记的生长素摄取的最终放射性。 在这里,我们描述了生长素运输能力周围的结瘤敏感区在年轻幼苗根的测量。 truncatula 响应根瘤菌接种。 类似的测定可以适用于其他植物物种并回答其他生物学问题。

关键字:吲哚乙酸, 结瘤, 向顶生长素的极性运输, 使用生长素极性运输


  1. 培养皿(150×15mm)(BD,目录号:351058)
  2. 培养皿(35×10mm)(BD,目录号:351008)
  3. SandBlaster fine 320砂粒砂纸(3M,目录号:70-0710-1785-2)
  4. 50ml Greifon管(Greiner Bio One International GmbH,目录号:227261)
  5. 废液瓶
  6. 铝箔(Confoil)
  7. 1.5 ml Eppendorf管
  8. Kimwipes
  9. 6ml闪烁瓶(Pico Prias小瓶)(PerkinElmer,目录号:6000192)
  10. 石蜡膜条
  11. Medic藜种子(栽培品种Jemalong A17)(SARDI)
  12. < em>中华根瘤菌(根瘤菌)培养物
  13. 次氯酸钠溶液(Bleach)(Pelikan)
  14. 灭菌蒸馏水
  15. 乙醇(EMD Millipore Corporation,EMSURE )
  16. 琼脂糖(AMRESCO,目录号:0710)
  17. 乳化剂安全,2×5L(闪烁液)(PerkinElmer,目录号:6013389)
  18. CaCl 2·2H 2 O(Sigma-Aldrich,目录号:C3306)
  19. 硫酸镁七水合物(MgSO 4·7H 2 O)(Sigma-Aldrich,目录号:M1880)
  20. KH 2 SO 4(Sigma-Aldrich,目录号:P0772)
  21. Na 2 HPO 4·2H 2 O(Sigma-Aldrich,目录号:71643)
  22. Fe柠檬酸盐(Sigma-Aldrich,Fluka ,目录号:44941) 注意:在Sigma-Aldrich网站上也称为"柠檬酸铁(III)三水合物单水合物"。
  23. (Sigma-Aldrich,目录号:B6768)。< br />
  24. MnSO 4·4H 2 O(Merck Millipore,目录号:102786)
  25. ZnSO 4·7H 2 O(Sigma-Aldrich,目录号:Z4750)
  26. CuSO 4·5H 2 O(Sigma-Aldrich,目录号:C7631)
  27. H 2 O 2 MoO 4(Sigma-Aldrich,目录号:232084)
  28. Na 2 SO 4·MoO 4·2H 2 O(Sigma-Aldrich,目录号:331058)
  29. 琼脂(TEKNOVA,目录号:A7777)
  30. 氚标记的吲哚-3-乙酸(3 H-IAA)嵌段(pH 4.8)(American Radiolabelled Chemicals,目录号:ART 0340)
  31. Fahraeus媒体(见配方)
  32. 3-H-IAA嵌段(参见配方)


  1. 植物生长室,设置在25℃,16/8h日/夜循环,具有150μmolm -1 -2光-1强度(Thermo Fisher Scientific)
  2. 闪烁计数器(PerkinElmer,型号:Tri-Carb 2800TR)
  3. 闪烁架(PerkinElmer)
  4. 移液管(Eppendorf AG)
  5. 剪刀(ECKERSLEY'S)
  6. 精细镊子(Dumont和Fils)(D'OUTILS DUMONT S.A.)
  7. 旋转振荡器(SeouLin Bioscience,型号:MyLab TM Intelli-Mixer)
  8. 平台振动器(Eppendorf AG,New Brunswick ,型号:INNOVA 2100)
  9. 微波


  1. 根据需要,将Medic藜苜蓿A17种子(或其他所需的苜蓿栽培品种)在体外发芽和生长在含有Fåhraeus培养基的150mm直径培养皿上,如Ng等人(2015)(图1)中所述。
    1. 首先在砂纸上破碎种子,并在旋转振荡器上在6%(w/v)次氯酸钠中表面灭菌10分钟,然后用无菌蒸馏水漂洗至少五次。
    2. 在旋转振荡器上的Falcon管中,在无菌蒸馏水中孵育6小时后,将种子铺在含有åus琼脂的培养皿上,置于4℃下48小时以使萌发同步,随后在20℃下发芽过夜。
    3. 将约1cm长的幼苗置于含有å氏琼脂的新鲜培养皿中,每个平板在无菌层流罩中为7个幼苗,并且在25℃下生长4天,16小时一天,8小时夜循环和光强度150μmolm -2 -2 s -1 s -1。在植物生长室中。培养皿垂直排列,使根部沿着培养基的表面生长,带有黑色纸板散布在板之间以防止根暴露于光。丢弃在琼脂表面下生长的任何幼苗。

      图1. Medic藜 有根瘤菌的幼苗的生长和接种。多个幼苗生长在单培养皿。将根瘤菌培养物的细滴(〜1μl; OD 600 = 0.1)接种到每个根(插图)上的结节敏感区。

  2. 如果根瘤菌感染的效果是感兴趣的,4天龄的M.在结节敏感区,用苜蓿中华根瘤菌(melorici)(苜蓿根瘤菌)(根瘤菌)对秧苗幼苗进行点接种,即在根尖上方3 mm,在根部区域,根毛刚刚出现并仍在伸长(图1)。
    1. 在接种之前,在培养皿的下侧标记接种点。注意根和琼脂表面需要干燥以避免接种物的移动。当比较不同的实验时,重要的是在一天的同一时间进行接种和生长素转运测量,因为我们已经观察到在亮/暗期间在不同时间的总生长素运输的变化。
    2. 如果生长素转运测定适用于其它生物学问题,则可以在该步骤包括幼苗的其它处理。例如:
      1. 根的菌根感染的影响。在这种情况下,根在生长素运输测量之前首先被菌根孢子局部感染。
      2. 天然或合成的生长素转运调节剂对植物生长素转运的作用,例如分别为类黄酮或1-N-萘基邻氨甲酰苯甲酸。在这种情况下,可以在存在或不存在根瘤菌的情况下用化学品处理根。
      3. 除了本文所述的原始生长素转运测量外,还可以通过对本文所述方案的稍微修改来研究碱基生长素转运(从根尖到根部)[参见Ng等人的补充图2 。(2015)]。
    3. 尽管已经发现这里描述的根瘤菌接种在24小时孵育时间是最佳的,但是其它处理可以根据需要适应更短或更长的孵育时间,只要秧苗不超过培养皿的长度,确保根尖区域保持健康和直。
  3. 在培养皿(35×10mm)中制备3-H-IAA琼脂糖块,并用无菌手术刀切割成尺寸为2mm×2mm×2mm的块(图2A和B) 。

    图2.放射性标记的生长素块的制备和生长素转运测定A.一个35×10mm的培养皿和用于制备放射性标记的生长素块的无菌手术刀。 B.使用手术刀将冷却的放射性标记的生长素琼脂切成较小的块(2mm×2mm×2mm)。 C.根段被排列在石蜡膜条上,并且使用细镊子将小的放射性标记的生长素琼脂块紧密地放置在每个根段的切割端。 D.孵育后,将样品收集在含有闪烁液的单个闪烁管中
  4. 为了研究接种后24小时的生长素转运能力,在接种后18小时,在接种点上方8mm处切下根。根段(含有根尖)置于石蜡膜条上。将一块3-H-IAA琼脂糖置于每个根段的切割端(图2C)。重要的是检查琼脂块的切割表面与切割的根表面紧密接触,以确保没有可以防止生长素迁移到根段中的间隙。将根段在室温下黑暗中孵育6小时。
  5. 制备每个含有2ml闪烁液的6ml闪烁瓶(图2D)。
  6. 丢弃来自3 H-IAA琼脂糖块的根的第一个4mm。用干净的手术刀切割相邻的4mm切片,然后使用干净的镊子将其置于含有闪烁液的小瓶中,确保根部完全浸没在流体中。最后的4mm节段(具有过量的根尖废弃)是置于含有闪烁液的单独的闪烁瓶中。
    1. 钳子应定期在乙醇中漂洗,并用Kimwipe组织干燥,以防止样品之间的放射性的携带。
    2. 将小瓶用盖子覆盖并在平台振荡器上在室温下温育过夜,以将放射性标记的生长素提取到闪烁液中。
  7. 将包含根样品的小瓶置于闪烁架中。
    1. 在运行开始时包括具有闪烁液但不具有根段的三个小瓶; 这些用于减去平均背景。
    2. 样品在TriCarb 2800TR闪烁计数器中分析1分钟,每次使用 3 H放射性核素衰减的默认参数。
  8. 结果(以每分钟计数)导出为电子表格并进行分析。表1中示出了示例数据集。如果需要,需要去除离群值,即位于平均背景下方的读数,例如在列表中读数为'9'的样本下面。这些离群值通常是由于含有放射性标记的生长素的琼脂块之一失去与根的接触。


  9. 这些数据集通常产生可以使用Student's t检验(当比较两种处理时)或方差分析(当比较几种处理时)进行分析的正态分布的数据。我们建议每个处理大量幼苗(至少15-20),因为幼苗之间的生长素转运存在一些变化。
  10. 确保所有放射性废物在特殊辐射废物箱中被丢弃


  1. Fåhraeus媒体(每升)
    132 mg CaCl <2> ·2H 2 O
    120 mg MgSO 4 7H 2 O
    100 mg KH 2 SO
    75 mg Na 2 HPO 4 ·2H 2 O
    5mg枸橼酸铁 2.86mg H sub 3 BO 3 sub
    2.03 mg MnSO 4 ·4H 4 ·7H 4 ·5H 2 MoO 4
    121微克钠 2 MoO 4 ·2H 2 O
    10g琼脂(Gelita J3级)
  2. 3 H-IAA嵌段
    1. 在微波中熔化1%水琼脂糖,调节至pH 4.8,并冷却至约50℃
    2. 通过在Eppendorf管中稀释在20μl乙醇中制备7.5μl 3 H-IAA储备液。用铝箔包裹管子,保持黑暗。
    3. 小心地将稀释的3 H-IAA混合物混合到培养皿(35×10mm)中的2ml熔融的1%水琼脂糖中。在每个嵌段中获得相似量的放射性标记的生长素是重要的。这应该通过将来自板的不同区域的多个单独的块浸入闪烁液中,在振荡器上孵育过夜并测量放射性来测试。
    4. 让混合物风干15分钟。
    5. 使用手术刀切割成2 mm x 2 mm x 2 mm块,使用印刷网格作为块大小的模板。
    6. 保持块冷却(4°C),在黑暗中,直到需要通过将板包装在铝箔。 在进行转运测定的同一天始终准备块。


该方案改编自Lewis和Muday(2009),van Noorden等人(2006),Wasson等人(2006),Plet等人, (2011),由Ng等人(2015)执行。 这项工作得到澳大利亚研究委员会未来奖学金授予Ulrike Mathesius(FT100100669)的支持。


  1. Lewis,DR和Muday,GK(2009)。  Measurement 在拟南芥中的生长素转运。 4 4(4):437-451。
  2. Ng,JL,Hassan,S.,Truong,TT,Hocart,CH,Laffont,C.,Frugier,F。和Mathesius,U。(2015)。  类黄酮和植物生长素转运抑制剂挽救Medic属truncatula细胞分裂素感知突变体cre1中的共生结瘤。 植物细胞 27(8):2210-2226。
  3. Plet,J.,Wasson,A.,Federico,A.,Le Signor,C.,Baker,D.,Mathesius,U.,Crespi,M.and Frugier,F。(2011) "ke-insertfile"href =""target ="_ blank"> MtCRE1依赖性细胞分裂素信号整合细菌和植物提示,以协调苜蓿中的共生结节器官发生truncatula 。 Plant J。 65(4):622-633。
  4. van Noorden,GE,Ross,JJ,Reid,JB,Rolfe,BG和Mathesius,U.(2006)。  缺陷长距离植物生长素运输调节在Medic藜超级数值结节突变体中。植物生理学 140 (4):1494-1506。
  5. Wasson,AP,Pellerone,FIand Mathesius,U.(2006)。  在Medic ago中沉默类黄酮途径抑制根瘤形成并防止根瘤菌的植物生长素运输调节。 18(7):1617- 1629。
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容, 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2016 The Authors; exclusive licensee Bio-protocol LLC.
引用:Ng, J. L. and Mathesius, U. (2016). Measuring Auxin Transport Capacity in Seedling Roots of Medicago truncatula. Bio-protocol 6(12): e1842. DOI: 10.21769/BioProtoc.1842.