Kazusato Oikawa
  • Department of Cell Biology, National Institute for Basic Biology, Japan
研究方向
  • Plant science
个人信息

Education

Ph.D. in Science, Faculty of Science, Graduate School of Tokyo Metropolitan University, Japan (2004)

Current position

Assistant professor in Agricultural Department of Niigata University, Japan

Publications (since 2008)

  1. Shiraya, T., Mori, T., Maruyama, T., Sasaki, M., Takamatsu, T., Oikawa, K., Itoh, K., Kaneko, K., Ichikawa, H. and Mitsui, T. (2015). Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnol J 13(9): 1251-1263.
  2. Goto-Yamada, S., Mano, S., Yamada, K., Oikawa, K., Hosokawa, Y., Hara-Nishimura, I. and Nishimura, M. (2015). Dynamics of the Light-Dependent Transition of Plant Peroxisomes. Plant Cell Physiol 56(7): 1264-1271.
  3. Oikawa, K., Matsunaga, S., Man,o S., Kondo, M., Yamada, K., Hayashi, M., Kagawa, T., Kadota, A., Sakamoto, W., Higashi, H., Watanabe, M., Mitsui, T., Shigemasa, A., Iino, T., Hosokawa, Y. and Nishimura, M. (2015). Peroxisome-chloroplast physical interaction elucidated by in situ laser analysis. Nat. Plants 1: 15035.
  4. Shibata, M., Oikawa, K., Mano, S. and Nishimura, M. (2014). Measurement of the Number of Peroxisomes. Bio-protocol 4(21): e1284.
  5. Bahaji, A., Baroja-Fernandez, E., Sanchez-Lopez, A. M., Munoz, F. J., Li, J., Almagro, G., Montero, M., Pujol, P., Galarza, R., Kaneko, K., Oikawa, K., Wada, K., Mitsui, T. and Pozueta-Romero, J. (2014). HPLC-MS/MS analyses show that the near-Starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s) alternative to the pPGI-pPGM-AGP pathway. PLoS One 9(8): e104997.
  6. Shibata, M., Oikawa, K., Yoshimoto, K., Goto-Yamada, S., Mano, S., Yamada, K., Kondo, M., Hayashi, M., Sakamoto, W., Ohsumi, Y. and Nishimura, M. (2014). Plant autophagy is responsible for peroxisomal transition and plays an important role in the maintenance of peroxisomal quality. Autophagy 10(5): 936-937.
  7. Goto-Yamada, S., Mano, S., Oikawa, K., Shibata, M. and Nishimura, M. (2014). Interaction between chaperone and protease functions of LON2, and autophagy during the functional transition of peroxisomes. Plant Signal Behav 9(5): e28838.
  8. Yoshimoto, K., Shibata, M., Kondo, M., Oikawa, K., Sato, M., Toyooka, K., Shirasu, K., Nishimura, M. and Ohsumi, Y. (2014). Organ-specific quality control of plant peroxisomes is mediated by autophagy. J Cell Sci 127(Pt 6): 1161-1168.
  9. Shibata, M.*, Oikawa, K.*, Yoshimoto, K., Kondo, M., Mano, S., Yamada, K., Hayashi, M., Sakamoto, W., Ohsumi, Y. and Nishimura, M. (2013). Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25(12): 4967-4983. (*Equal contribution)
  10. Usami, H., Maeda, T., Fujii, Y., Oikawa, K., Takahashi, F., Kagawa, T., Wada, M. and Kasahara, M. (2012). CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens. Planta 236(6): 1889-1897.
  11. Oikawa, K., Yamasato, A., Kong, S. G., Kasahara, M., Nakai, M., Takahashi, F., Ogura, Y., Kagawa, T. and Wada, M. (2008). Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148(2): 829-842.