Plant Science


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 529 Views Oct 20, 2023

Maize is one of the most important crops in the world, and ensuring its successful growth and productivity is crucial for global food security. One way to enhance maize growth and productivity is by improving the colonization of its roots by beneficial microorganisms. In this regard, Serendipita indica, a plant growth–promoting fungus, has gained attention for its ability to enhance plant growth and productivity, especially in cereal crops and medicinal plants. Previous studies have shown that S. indica can colonize various plant species, including maize, but the efficiency of the colonization process in maize seedlings has not been extensively characterized. This protocol outlines a method for efficient colonization of maize seedlings with the beneficial fungus S. indica. The protocol includes the preparation of stock solutions, maintenance and growth of S. indica, surface sterilization and germination of seeds, preparation of S. indica chlamydospores, and colonization of maize plants with S. indica. The advantages of this protocol include the use of surface sterilization techniques that minimize contamination, the production of a large number of viable chlamydospores, and efficient colonization of maize seedlings with S. indica. This protocol may be useful for researchers studying the role of S. indica in promoting plant growth and combating biotic and abiotic stress. Additionally, this protocol may be used in the development of biofertilizers using S. indica as a means of increasing crop yields and reducing dependence on synthetic fertilizers. Overall, this protocol offers a reliable and efficient method for colonizing maize seedlings with S. indica and may have potential applications in the agricultural industry. This study also provides a valuable tool for researchers interested in studying plant–microbe interactions in maize and highlights the potential of S. indica as a biocontrol agent to enhance maize productivity under adverse conditions.


Key features

• This protocol builds upon the method developed by Narayan et al. (2022), and its application optimized for the root endophytic symbiotic fungus S. indica.

• This protocol also allows for histochemical analysis to visualize the colonized fungal spores in the root cells of host plant species.

• This protocol helps in mathematical calculation of the percent colonization or efficiency of colonization.

• This protocol utilizes readily available laboratory equipment, including a light microscope, autoclave, and laminar flow hood, ensuring ease of reproducibility in other research laboratories.


Graphical overview


0 Q&A 552 Views Oct 20, 2023

Strawberries are delicious and nutritious fruits that are widely cultivated and consumed around the world, either fresh or in various products such as jam, juice, and ice cream. Botrytis cinerea is a fungal pathogen that causes gray mold disease on many crops, including strawberries. Disease monitoring is an important aspect for growing commercial crops like strawberry because there is an urgent need to develop effective strategies to control this destructive gray mold disease. In this protocol, we provide an important tool to monitor the gray mold fungal infection progression in different developmental stages of strawberry. There are different types of inoculation assays for B. cinerea on strawberry plants, such as in vitro (in/on a culture medium) or in vivo (in a living plant). In vivo inoculation assays can be performed at early, middle, and late stages of strawberry development. Here, we describe three methods for in vivo inoculation assays of B. cinerea on strawberry plants. For early-stage strawberry plants, we modified the traditional fungal disc inoculation method to apply to fungal infection on strawberry leaves. For middle-stage strawberry plants, we developed the flower infection assay by dropping fungal conidia onto flowers. For late-stage strawberry plants, we tracked the survival rate of strawberry fruits after fungal conidia infection. This protocol has been successfully used in both lab and greenhouse conditions. It can be applied to other flowering plants or non-model species with appropriate modifications.


Key features

• Fungal disc inoculation on early-stage strawberry leaves.

• Fungal conidia inoculation on middle-stage strawberry flowers.

• Disease rating for late-stage strawberry fruits.

• This protocol is applicable to the other flowering plants with appropriate modifications.


Graphical overview



In vivo infection progression assays of gray mold fungus Botrytis cinerea at different developmental stages of strawberry. Created with BioRender.com.

1 Q&A 841 Views Aug 20, 2023

Yield losses attributed to plant pathogens pose a serious threat to plant productivity and food security. Botrytis cinerea is one of the most devastating plant pathogens, infecting a wide array of plant species; it has also been established as a model organism to study plant–pathogen interactions. In this context, development of different assays to follow the relative success of B. cinerea infections is required. Here, we describe two methods to quantify B. cinerea development in Arabidopsis thaliana genotypes through measurements of lesion development and quantification of fungal genomic DNA in infected tissues. This provides two independent techniques that are useful in assessing the susceptibility or tolerance of different Arabidopsis genotypes to B. cinerea.


Key features

• Protocol for the propagation of the necrotrophic plant pathogen fungus Botrytis cinerea and spore production.

• Two methods of Arabidopsis thaliana infection with the pathogen using droplet and spray inoculation.

• Two readouts, either by measuring lesion size or by the quantification of fungal DNA using quantitative PCR.

• The two methods are applicable across plant species susceptible the B. cinerea.


Graphical overview



A simplified overview of the droplet and spray infection methods used for the determination of B. cinerea growth in different Arabidopsis genotypes

0 Q&A 756 Views Sep 20, 2022

Weeds compete with crops for growth resources, causing tremendous yield losses. Paraquat is one of the three most common non-selective herbicides. To study the mechanisms of paraquat resistance, we need to trace the movement of paraquat in plants and within the cell. 14C is a radioactive carbon isotope widely used to trace substances of interest in various biological studies, especially in transport analyses. Here, we describe a detailed protocol using 14C-paraquat to demonstrate paraquat efflux in Arabidopsis protoplasts.

1 Q&A 2526 Views Jan 20, 2022

Rhizoctonia solani is a soil-borne fungus, which rarely produces any spores in culture. Hence, all inoculation procedures are based on mycelia, often as a coat on cereal kernels, placed in close vicinity to the plant to be infected. In this protocol, an inoculation method is described where the fungus is first allowed to infest a perlite-maize flour substrate for 10 days, followed by thorough soil mixing to generate uniform fungal distribution. Pre-grown seedlings are then replanted in the infested soil. Plant materials can be harvested, five (sugar beet) and ten days (Arabidopsis) post infection, followed by a rapid cleaning step ahead of any nucleic acid preparation. Commercial DNA or RNA extraction kits can be used or, if higher DNA yield is required, a CTAB extraction method. Our purpose was to develop a reliable and reproducible protocol to determine the infection levels in planta upon infection with R. solani. This protocol is less laborious compared to previous ones, improves the consistency of plant infection, reproducibility between experiments, and suits both a root crop and Arabidopsis.



Graphic abstract:



Overview of the R. solani infection procedure.


0 Q&A 1769 Views Oct 20, 2021

Defense priming describes the enhanced potency of cells to activate defense responses. Priming accompanies local and systemic immune responses and can be triggered by microbial infection or upon treatment with certain chemicals. Thus, chemically activating defense priming is promising for biomedicine and agriculture. However, test systems for spotting priming-inducing chemicals are rare. Here, we describe a high-throughput screen for compounds that prime microbial pattern-spurred secretion of antimicrobial furanocoumarins in parsley culture cells. For the best possible throughput, we perform the assay with 1-ml aliquots of cell culture in 24-well microtiter plates. The advantages of the non-invasive test over competitive assays are its simplicity, remarkable reliability, and high sensitivity, which is based on furanocoumarin fluorescence in UV light.

0 Q&A 2375 Views Aug 20, 2021

Ralstonia solanacearum is a soil-borne pathogen with worldwide distribution that causes bacterial wilt disease in more than 250 plant species. R. solanacearum invades plants through the roots, reaches the vascular system, and colonizes the whole plant by moving through the xylem, where it eventually replicates rapidly, causing plant death. Usual assays to measure the virulence of R. solanacearum under laboratory conditions rely on soil-drenching inoculation followed by observation and scoring of disease symptoms. Here, we describe a protocol to assess the replication of R. solanacearum following injection into tomato stems. This protocol includes four major steps: 1) growth of tomato plants; 2) R. solanacearum injection into tomato stems; 3) collection of tomato xylem samples and bacterial quantitation; and 4) data analysis and representation. This method bypasses the natural penetration process of the pathogen, thus minimizing variation associated with stochastic events during bacterial invasion, and provides a sensitive and accurate measurement of bacterial fitness inside xylem vessels.

0 Q&A 3098 Views Aug 5, 2021

Ralstonia solanacearum is a devastating soil-borne bacterial pathogen that causes disease in multiple host plants worldwide. Typical assays to measure virulence of R. solanacearum in laboratory conditions rely on soil-drenching inoculation followed by observation and scoring of disease symptoms. Here, we describe a novel inoculation protocol to analyze the replication of R. solanacearum upon infiltration into the leaves of Nicotiana benthamiana, in which gene expression has been altered using Agrobacterium tumefaciens. The protocol includes five major steps: 1) growth of N. benthamiana plants; 2) infiltration of A. tumefaciens; 3) R. solanacearum inoculation; 4) sample collection and bacterial quantitation; 5) data analysis and representation. The transient gene expression or gene silencing prior to R. solanacearum inoculation provides a straightforward way to perform genetic analysis of plant functions involved in the interaction between pathogen and host, using the appropriate combination of A. tumefaciens and R. solanacearum strains, with high sensitivity and accuracy provided by the quantitation of bacterial numbers in plant tissues.

0 Q&A 3304 Views Jul 5, 2021

Soluble sugars play key roles in plant growth, development, and adaption to the environment. Characterizing sugar content profiling of plant tissues promotes our understanding of the mechanisms underlying these plant processes. Several technologies have been developed to quantitate soluble sugar content in plant tissues; however, it is difficult with only minute quantities of plant tissues available. Here, we provide a detailed protocol for gas chromatography mass spectrometry (GC-MS)-based soluble sugar profiling of rice tissues that offers a good balance of sensitivity and reliability, and is considerably more sensitive and accurate than other reported methods. We summarize all the steps from sample collection and soluble sugar extraction to derivatization procedures of the soluble extracted sugars, instrumentation settings, and data analysis.

0 Q&A 2808 Views Dec 5, 2020

Pipecolic acid (Pip), a non-proteinacious product of lysine catabolism, is an important regulator of immunity in plants and humans alike. For instance, Pip accumulation is associated with the genetic disorder Zellweger syndrome, chronic liver diseases, and pyridoxine-dependent epilepsy in humans. In plants, Pip accumulates upon pathogen infection and is required for plant defense. The aminotransferase ALD1 catalyzes biosynthesis of Pip precursor piperideine-2-carboxylic acid, which is converted to Pip via ornithine cyclodeaminase. A variety of methods are used to quantify Pip, and some of these involve use of expensive amino acid analysis kits. Here, we describe a simplified procedure for quantitative analysis of Pip from plant tissues. Pipecolic acid was extracted from leaf tissues along with an internal standard norvaline, derivatized with propyl chloroformate and analyzed by gas chromatography-coupled mass spectrometry using selective ion mode. This procedure is simple, economical, and efficient and does not involve isotopic internal standards or multiple-step derivatizations.




We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.