Cancer Biology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 4856 Views Mar 20, 2021

Many new drug development candidates are highly lipophilic compounds with low water solubility. This constitutes a formidable challenge for the use of such compounds for cancer therapy, where high doses and intravenous injections are needed (Di et al., 2012). Here, we present a poly(2-oxazoline) polymer (POx)-based nanoformulation strategy to solubilize and deliver hydrophobic drugs. POx micelles are prepared by a simple thin-film hydration method. In this method, the drug and polymer are dissolved in a common solvent and allowed to mix, following which the solvent is evaporated using mild heating conditions to form a thin film. The micelles form spontaneously upon hydration with saline. POx nanoformulation of hydrophobic drugs is unique in that it has a high drug loading capacity, which is superior to micelles of conventional surfactants. Moreover, multiple active pharmaceutical ingredients (APIs) can be included within the same POx micelle, thereby enabling the codelivery of binary as well as ternary drug combinations (Han et al., 2012; He et al., 2016).

0 Q&A 3270 Views Dec 20, 2020

G-protein coupled receptors (GPCRs) remain at the forefront of drug discovery efforts. Detailed assessment of features contributing to GPCR ligand engagement in a physiologically relevant environment is imperative to the development of new therapeutics with improved efficacy. Traditionally, binding properties such as affinity and kinetics were obtained using biochemical radioligand binding assays. More recently, the high specificity of resonance energy transfer has been leveraged toward the development of homogeneous cell-based proximity assays with capacity for real-time kinetic measurements. This suite of ligand binding protocols couples the specificity of bioluminescent resonance energy transfer (BRET) with the sensitivity afforded by the luminescent HiBiT peptide. The BRET format is used to quantify dynamic interactions between ligands and their cognate HiBiT-tagged GPCRs through competitive binding with fluorescent Tracers. At the same time, high affinity complementation of HiBiT with the cell impermeable LgBiT limits the bright bioluminescence donor signal to the cell surface and eliminates luminescence background from unoccupied receptors present in intracellular compartments.

0 Q&A 2705 Views Oct 5, 2020
Due to cell heterogeneity, the differences among individual cells are averaged out in bulk analysis methods, especially in the analysis of primary tumor biopsy samples from patients. To deeply understand the cell-to-cell variation in a primary tumor, single-cell culture and analysis with limited amount of cells are in high demand. Microfluidics has been an optimum platform to address the issue given its small reaction volume requirements. Digital microfluidics, which utilizes an electric signal to manipulate individual droplets has shown promise in cell-culture with easy controls. In this work, we realize single cell trapping on digital microfluidic platform by fabricating 3D microstructures on-chip to form semi-closed micro-wells. With this design, 20% of 30 x 30 array can be occupied by isolated single cells. We also use a low evaporation silicon oil and a fluorinated surfactant to lower the droplet actuation voltage and prevent the drop from evaporation, while allowing cell respiration during the long term of culture (24 h). The main steps for single cell trapping on digital microfluidics, as illustrated in this protocol, include 3D microstructures design, 3D microstructures construction on chip and oil film with surfactant for single cell trapping on chip.
1 Q&A 5046 Views Jul 5, 2020
In drug development programmes, multiple assays are needed for the determination of protein-compound interactions and evaluation of potential use in assays with protein-protein interactions. In this protocol we describe the waterLOGSY NMR method for confirming protein-ligand binding events.
0 Q&A 16005 Views Jun 20, 2012
This protocol utilizes PicoGreen 96-well plate technology. This method is applied to estimate the sensitivity of different tumor cell lines to chemodrugs.
7 Q&A 96636 Views May 20, 2012
Clonogenic assays serve as a useful tool to test whether a given cancer therapy can reduce the clonogenic survival of tumor cells. A colony is defined as a cluster of at least 50 cells that can often only be determined microscopically. A clonogenic assay is the method of choice to determine cell reproductive death after treatment with ionizing radiation, but can also be used to determine the effectiveness of other cytotoxic agents. The following protocol has been modified from a published version (Franken et al., 2006).



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.