Cell Biology


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 617 Views Jul 20, 2023

Synapses provide the main route of signal transduction within neuronal networks. Many factors regulate critical synaptic functions. These include presynaptic calcium channels, triggering neurotransmitter release, and postsynaptic ionotropic receptors, mediating excitatory and inhibitory postsynaptic potentials. The key features of synaptic transmission and plasticity can be studied in primary cultured hippocampal neurons. Here, we describe a protocol for the preparation and electrophysiological analysis of paired hippocampal neurons. This model system allows the selective genetic manipulation of one neuron in a simple neuronal network formed by only two hippocampal neurons. Bi-directionally analyzing synaptic transmission and short-term synaptic plasticity allows the analysis of both pre- and postsynaptic effects on synaptic transmission. For example, with one single paired network synaptic responses induced by both, a wild-type neuron and a genetically modified neuron can be directly compared. Ultimately, this protocol allows experimental modulation and hence investigation of synaptic mechanisms and thereby improves previously developed methods of studying synaptic transmission and plasticity in ex vivo cultured neurons.

Key features

• Preparation of ex vivo paired cultured hippocampal neurons.

• Bi-directional electrophysiological recordings of synaptic transmission and plasticity.

• Genetic modulation of synaptic network formation (demonstrated by presynaptic viral overexpression of the auxiliary calcium channel α2δ-2 subunit).

Graphical overview

0 Q&A 2437 Views Jul 5, 2021

Dopamine (DA) signaling affects locomotion, feeding, learning, and memory in C. elegans. Various assays have been developed to study the proteins involved in these behaviors; however, these assays show behavioral output only when there is a drastic change in DA levels. We designed an assay capable of observing behavioral output even with only slight alterations in DA levels. To achieve this, we designed a behavioral paradigm where we combined C. elegans movement with ethanol (EtOH) administration. The behavioral response to alcohol/EtOH and susceptibility to alcohol-use disorders (AUDs) have been linked to DA. Our assay correlates an increase in DA levels due to EtOH and movement obstruction due to a dry surface to a circular sedative behavior, which we designated as EtOH-induced sedative (EIS) behavior. We successfully utilized this assay to assign physiological and behavioral functions to a DA autoreceptor, DOP-2.

0 Q&A 2443 Views Feb 5, 2021

Alterations in synaptic transmission are critical early events in neuromuscular disorders. However, reliable methodologies to analyze the functional organization of the neuromuscular synapses are still needed. This manuscript provides a detailed protocol to analyze the molecular assembly of the neuromuscular synapses through immune-electrophysiology in Drosophila melanogaster. This technique allows the quantification of the molecular behavior of the neuromuscular synapses by correlating the structural configuration of the synaptic boutons with their electrical activity.

1 Q&A 9730 Views Oct 5, 2018
Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that allows sub-second detection of oxidizable chemical species, including monoamine neurotransmitters such as dopamine, norepinephrine, and serotonin. This technique has been used to record the physiological dynamics of these neurotransmitters in brain tissue, including their rates of release and reuptake as well as the activity of neuromodulators that regulate such processes. This protocol will focus on the use of ex vivo FSCV for the detection of dopamine within the nucleus accumbens in slices obtained from rodents. We have included all necessary materials, reagents, recipes, procedures, and analyses in order to successfully perform this technique in the laboratory setting. Additionally, we have also included cautionary points that we believe will be helpful for those who are novices in the field.
0 Q&A 11081 Views Apr 20, 2018
Neuromuscular junction (NMJ) is the specialized chemical synapse that mediates the transmission of the electrical impulse running along motor neuron axons to skeletal muscle fibers. NMJ is the best characterized chemical synapse and its study along many years of research has provided most of the general knowledge of synapse development, structure and functionality.

Electrophysiology is the most accurate experimental procedure to study NMJ physiology and it largely contributed to the elucidation of synaptic transmission basic principles. Many electrophysiological techniques have been developed to study NMJ physiology and physiopathology. In this paper, we describe an ex vivo tissue preparation for electrophysiology that can be applied to investigate nerve-muscle transmission functionality in mice. It is routinely used in our laboratory to study presynaptic neurotoxins, antitoxins, and to monitor NMJ degeneration and regeneration. This is a broadly applicable technique which can also be adopted to investigate alterations of NMJ activity in mouse models of neuromuscular diseases, including peripheral neuropathies, motor neuron disorders and myasthenic syndromes.
0 Q&A 8822 Views Mar 5, 2018
The neuromuscular junction (NMJ) is the specialized synapse by which peripheral motor neurons innervate muscle fibers and control skeletal muscle contraction. The NMJ is the target of several xenobiotics, including chemicals, plant, animal and bacterial toxins, as well as of autoantibodies raised against NMJ antigens. Depending on their biochemical nature, the site they target (either the nerve or the muscle) and their mechanism of action, substances affecting NMJ produce very specific alterations of neuromuscular functionality.

Here we provide a detailed protocol to isolate the diaphragmatic muscle from mice and to set up two autonomously innervated hemidiaphragms. This preparation can be used to study bioactive substances like toxins, venoms and neuroactive molecules of various origin, or to measure the force of skeletal muscle contraction.

The ‘mouse phrenic nerve hemidiaphragm assay’ (MPN) is an established model of ex vivo NMJ and recapitulates the complexity of neuromuscular transmission in a system easy to control and to manipulate, thus representing a valuable tool to study both NMJ physiology and the mechanism of action of toxins and other molecules acting at this synapse.
0 Q&A 5602 Views Dec 20, 2017
In this paper, our protocol for preparation of brain synaptosomes is described. Synaptosomes are a valuable model system for analysis of structural components of the synapse as well as for investigation of synaptic function. Synaptosomal preparations are necessary for understanding molecular changes at synapses where critical post-translational modifications of synaptic proteins may occur. Not only are synaptosomes rich in synaptic proteins, but they can be used for analyzing uptake of neurotransmitters into synaptic vesicles and for analysis of the involvement of neurotransmitter synthesis and release. Synaptosomes can be stimulated with increased calcium influx to release neurotransmitters. Synaptosomal preparations have been used in characterizing calcium dependent phosphorylation and activation of the GABA synthesizing enzyme GAD65 (L-glutamic acid decarboxylase with molecular weight of 65 kDa). By examining protein complexes on the membrane of synaptic vesicles obtained from synaptosomal preparations, it was possible to characterize the role of GAD65 in the coupled synthesis and vesicular uptake of GABA (γ-aminobutyric acid) culminating in GABA vesicular release, which contributes in an important way to fine-tuning of GABAergic neurotransmission.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.