Plant Science


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 656 Views Dec 20, 2022

MicroRNAs (miRNA) are small (21–24 nt) non-coding RNAs involved in many biological processes in both plants and animals. The biogenesis of plant miRNAs starts with the transcription of MIRNA (MIR) genes by RNA polymerase II; then, the primary miRNA transcripts are cleaved by Dicer-like proteins into mature miRNAs, which are then loaded into Argonaute (AGO) proteins to form the effector complex, the miRNA-induced silencing complex (miRISC). In Arabidopsis , some MIR genes are expressed in a tissue-specific manner; however, the spatial patterns of MIR gene expression may not be the same as the spatial distribution of miRISCs due to the non-cell autonomous nature of some miRNAs, making it challenging to characterize the spatial profiles of miRNAs. A previous study utilized protoplasting of green fluorescent protein (GFP) marker transgenic lines followed by fluorescence-activated cell sorting (FACS) to isolate cell-type-specific small RNAs. However, the invasiveness of this approach during the protoplasting and cell sorting may stimulate the expression of stress-related miRNAs. To non-invasively profile cell-type-specific miRNAs, we generated transgenic lines in which root cell layer-specific promoters drive the expression of AGO1 and performed immunoprecipitation to non-invasively isolate cell-layer-specific miRISCs. In this protocol, we provide a detailed description of immunoprecipitation of root cell layer-specific GFP-AGO1 using EN7::GFP-AGO1 and ACL5::GFP-AGO1 transgenic plants, followed by small RNA sequencing to profile single-cell-type-specific miRNAs. This protocol is also suitable to profile cell-type-specific miRISCs in other tissues or organs in plants, such as flowers or leaves.

Graphical abstract

0 Q&A 3046 Views Jun 20, 2021

Plant nanobiotechnology is a flourishing field that uses nanomaterials to study and engineer plant function. Applications of nanotechnology in plants have great potential as tools for improving crop yield, tolerance to disease and environmental stress, agrochemical delivery of pesticides and fertilizers, and genetic modification and transformation of crop plants. Previous studies have used nanomaterials functionalized with chemicals, including biocompatible polymers with charged, neutral, or hydrophobic functional groups, to improve nanomaterial uptake and localization in plant cells. Recently, the use of biorecognition motifs such as peptides has been demonstrated to enable the targeted delivery of nanoparticles in plants (Santana et al., 2020). Herein, we describe a bio-protocol to target nanoparticles with chemical cargoes to chloroplasts in plant leaves and assess targeting efficiency using advanced analytical tools, including confocal microscopy and elemental analysis. We also describe the use of isothermal titration calorimetry to determine the affinity of nanomaterials for their chemical cargoes. Nanotechnology-based methods for targeted delivery guided by conserved plant molecular recognition mechanisms will provide more robust plant bioengineering tools across diverse plant species.

Graphic abstract:

Targeted delivery of nanomaterials with chemical cargoes to chloroplasts enabled by plant biorecognition

0 Q&A 3792 Views Mar 5, 2020
Intercellular communication plays a crucial role in the establishment of multicellular organisms by organizing and coordinating growth, development and defence responses. In plants, cell-to-cell communication takes place through nanometric membrane channels called plasmodesmata (PD). Understanding how PD dictate cellular connectivity greatly depends on a comprehensive knowledge of the molecular composition and the functional characterization of PD components. While proteomic and genetic approaches have been crucial to identify PD-associated proteins, in vivo fluorescence microscopy combined with fluorescent protein tagging is equally crucial to visualise the subcellular localisation of a protein of interest and gain knowledge about their dynamic behaviour. In this protocol we describe in detail a robust method for quantifying the degree of association of a given protein with PD, through ratiometric fluorescent intensity using confocal microscopy. Although developed for N. benthamiana and Arabidopsis, this protocol can be adapted to other plant species.
0 Q&A 6317 Views Apr 5, 2019
Plasmodesmata (PD) are intercellular channels between walled plant cells that enable the transportation of materials between adjacent cells, which are important for plant growth and development. The permeability of PD must be tightly regulated. Assays to determine the permeability of PD are crucial for related studies on the regulation of PD development and permeability. Here we describe an assay for the determination of PD permeability via the observation and quantification of GFP diffusion and cell-to-cell transport of CMV MP-GFP in Arabidopsis leaves.
0 Q&A 6216 Views Dec 20, 2018
Cell-to-cell movement of proteins through plasmodesmata is a widely-established mechanism for intercellular signaling in plants. Current techniques to study intercellular protein translocation rely on single-cell transformation using particle bombardment or transgenic lines expressing photo-inducible fluorophores. The method presented here allows visualization and objective quantification of (effector) protein movement between N. benthamiana leaf cells. Agroinfiltration is performed using a single binary vector encoding a GFP-tagged protein of interest that is either mobile or non-mobile (MP; non-MP), together with an ER-anchored mCherry. Upon creation of mosaic-like transformation patterns, cell-to-cell movement of the MP can be followed by monitoring translocation of the GFP signal from mCherry labeled transformed cells into neighboring non-transformed cells. This process can be visualized using confocal microscopy and quantified following protoplast isolation and flow cytometric cell analysis. This method overcomes the limitations of existing methods as it allows rapid and objective quantification of protein translocation without the need of creating transgenic plants.
5 Q&A 19853 Views Sep 5, 2017
Extracellular vesicles (EVs) play an important role in intercellular communication by transporting proteins and RNA. While plant cells secrete EVs, they have only recently been isolated and questions regarding their biogenesis, release, uptake and function remain unanswered. Here, we present a detailed protocol for isolating EVs from the apoplastic wash of Arabidopsis thaliana leaves. The isolated EVs can be quantified using a fluorometric dye to assess total membrane content.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.