Protocols in Current Issue
Protocols in Past Issues
0 Q&A 661 Views Sep 20, 2022

When performing renal biopsy, it is necessary to identify the cortex, where glomeruli are exclusively distributed, to ensure the quality of the specimen for histological diagnosis. However, conventional methods using a stereomicroscope or magnifying lens often fail to clarify the quality of the specimen. We have established a fluorescent-based imaging technique for the on-site assessment of renal biopsy specimens. The fluorescent images can be easily obtained by adding an optical filter to the microscope and with a short incubation of an activatable fluorescent probe. This novel imaging technique can be applied to renal biopsy specimens for distinguishing the renal cortex.

0 Q&A 4568 Views Nov 20, 2020
Bacteriocins are small ribosomally synthesized antimicrobial peptides produced by some microorganisms including lactic acid bacteria (LAB), a group of Gram-positive bacteria (cocci, rods) expressing high tolerance for low pH. Bacteriocins kill bacteria rapidly and are biologically active at very low concentrations. Bacteriocins produced by LAB are primarily active against closely related bacterial species. Many bacteriocins have been investigated with respect to their potential use in promoting human, plant, and animal health, and as food biopreservatives. Bacteriocins produced by LAB are particularly interesting since several LAB have been granted GRAS (Generally Recognized as Safe) status. Because it is not always possible to extract active bacteriocins secreted from cells grown in liquid medium, we developed a simple and inexpensive peptide extraction procedure using a semi-solid nutrient-rich agar medium. We hereby present a detailed procedure that leads to the rapid extraction of secreted bioactive bacteriocin peptides from the oral species Streptococcus mutans, a prolific bacteriocin-producing species, and its potential application for bacteriocin extraction from other LAB (e.g., Streptococcus, Lactococcus, Enterococcus). We also present a simple method for the detection of bacteriocin activity from the purified extracellular peptide extract.
0 Q&A 4895 Views Mar 20, 2019
Plants need to respond appropriately to wounding and herbivorous insects. Peptide signals have been implicated in local and systemic induction of appropriate plant defense responses. To study these peptide signals and their perception in host plants, it is important to have reproducible bioassays. Several assays, such as treatment of peptide solution via pressure infiltration, have been developed. Here, we provide detailed protocols for peptide feeding and mechanical wounding for tomato seedlings. To directly introduce peptides into tomato seedlings, peptide solution is fed through the excised stem via the transpiration stream. To mimic the wounding caused by insect feeding, leaflets of tomato seedlings are mechanically damaged with a hemostat; and wounded and systemic unwounded leaves are harvested and analyzed separately. Samples from both assays may be further assessed by examining the transcript level of marker genes by quantitative real-time PCR (qRT-PCR).
0 Q&A 7074 Views Aug 20, 2017
The hypothalamus is a primary brain area which, in mammals, regulates several physiological functions that are all related to maintaining general homeostasis, by linking the central nervous system (CNS) and the periphery. The hypothalamus itself can be considered an endocrine brain region of some sort as it hosts in its different nuclei several kinds of neuropeptide-producing and -secreting neurons. These neuropeptides have specific roles and participate in the regulation of homeostasis in general, which includes the regulation of energy metabolism, feeding behavior, water intake and body core temperature for example.

As previously mentioned, in order to exert their effects, these peptides have to be produced but also, and mostly, to be secreted. In this context, it is of great importance to be able to assess how certain conditions, diseases, or treatments can actually influence the secretion of neuropeptides, thus the function of the different neuropeptidergic circuits.

One method to assess this is the perifusion of hypothalamic explants followed by quantification of peptides within the collected fractions.

Here, we explain step-by-step how to collect fractions during ex vivo perifusion of hypothalamic explants in which one can determine quantitatively neuropeptide/neurohormone release from these viable isolated tissues. Hypothalami perifusion has two great advantages over other existing assays: (1) it allows pharmacological manipulation to dissect out signaling mechanisms underlying release of different neuropeptides/neurohormones in the hypothalamic explants and, (2) it allows simultaneous experiments with different conditions on multiple hypothalami preparations, (3) it is, to our knowledge, the only method that permits the study of neuropeptide secretion in basal conditions and under repeated stimulations with the same hypothalami explants.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.