Protocols in Current Issue
Protocols in Past Issues
0 Q&A 302 Views Aug 5, 2023

Presentation of the variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (EMP1) at the surface of infected red blood cells (RBCs) underpins the malaria parasite’s pathogenicity. The transport of EMP1 to the RBC surface is facilitated by a parasite-derived trafficking system, in which over 500 parasite proteins are exported into the host cell cytoplasm. To understand how genetic ablation of selected exported proteins affects EMP1 transport, several EMP1 surface presentation assays have been developed, including: 1) trypsinization of surface-exposed EMP1 and analysis by SDS-PAGE and immunoblotting; and 2) infected RBC binding assays, to determine binding efficiency to immobilized ligand under physiological flow conditions. Here, we describe a third EMP1 surface presentation assay, where antibodies to the ectodomain of EMP1 and flow cytometry are used to quantify surface-exposed EMP1 in live cells. The advantages of this assay include higher throughput capacity and data better suited for robust quantitative analysis. This protocol can also be applied to other cellular contexts where an antibody can be developed for the ectodomain of the protein of interest.

0 Q&A 1108 Views Dec 5, 2022

Graft-versus-host disease (GvHD) is a significant complication of allogeneic hematopoietic stem cell transplantation. In order to develop new therapeutic approaches, there is a need to recapitulate GvHD effects in pre-clinical, in vivo systems, such as mouse and humanized mouse models. In humanized mouse models of GvHD, mice are reconstituted with human immune cells, which become activated by xenogeneic (xeno) stimuli, causing a multi-system disorder known as xenoGvHD. Testing the ability of new therapies to prevent or delay the development of xenoGvHD is often used as pre-clinical, proof-of-concept data, creating the need for standardized methodology to induce, monitor, and report xenoGvHD. Here, we describe detailed methods for how to induce xenoGvHD by injecting human peripheral blood mononuclear cells into immunodeficient NOD SCID gamma mice. We provide comprehensive details on methods for human T cell preparation and injection, mouse monitoring, data collection, interpretation, and reporting. Additionally, we provide an example of the potential utility of the xenoGvHD model to assess the biological activity of a regulatory T-cell therapy. Use of this protocol will allow better standardization of this model and comparison of datasets across different studies.

Graphical abstract

0 Q&A 2864 Views Jan 5, 2022

Experimental pneumonia models are important tools to study the pathophysiology of lung inflammation caused by microbial infections and the efficacy of (novel) drugs. We have applied a murine model of pneumonia induced by Pseudomonas (P.) aeruginosa infection to study acute host antibacterial defense in lungs, and assess epithelial cell specific responses as well as leukocyte recruitment to the alveolar space. To study host responses during disseminating pneumonia, we also applied a model of infecting mice with hypermucoviscous Klebsiella (K.) pneumoniae. In the latter model, K. pneumoniae is restricted to lung during the early phase of infection and at the later time points disseminates to the circulation and distal organs resulting in sepsis. Detailed procedures for induction of pneumonia in mice by Pseudomonas and Klebsiella and for isolation and analysis of infected organs, bronchoalveolar fluid, and bronchial brushes are provided in this article.

0 Q&A 5513 Views Feb 20, 2021

Phytophthora infestans is a hemibiotroph oomycete that primarily infects potato and tomato. It infects stems, leaves, and tubers and fruits of potato and tomato. High throughput and reproducible infection assays are prerequisites to find sources of resistance in any crop. In this protocol, we describe a detached leaf assay (DLA) for conducting the virulence assay of P. infestans in potato leaves. A late blight infection assay using a potato detached leaf is a semi-high throughput assay in which hundreds of plants can be screened in a laboratory setting.

0 Q&A 3055 Views Nov 20, 2020
Granulomas are organized multicellular structures that constitute the hallmark of an infection by the human pathogen Mycobacterium tuberculosis (Mtb). A better understanding of the complex host-Mtb interactions within the granuloma’s environment may lead to new therapeutic or preventive tools to improve the control of the tuberculosis pandemic. To date, several in vitro models that are able to mimic human nascent granulomas have been reported. Here we describe a protocol in which Mtb-infected human peripheral blood mononuclear cells (PBMCs) are embedded within a collagen matrix leading to the formation of three-dimensional micro-granulomas. Subsequently, PBMCs and Mtb can be retrieved allowing multiparametric readouts from both the host and the pathogen. In addition to the incorporation of a physiological extracellular matrix, this model has the singular advantage of recapitulating dormant-like Mtb features, as well as reproducing Mtb resuscitation observed under immunomodulatory treatments, which have not been reported in other published protocols to generate in vitro granulomas.
0 Q&A 2998 Views Jul 20, 2020
Human astroviruses (HAstV) are non-enveloped, positive-sense single stranded RNA viruses that typically cause gastroenteritis in children, the elderly and among immunocompromised individuals. Some HAstV species have also been implicated in neurological diseases. It is important to study these viruses to understand the pathogenesis and develop therapeutics. Here we describe HAstV infection in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. Although different HAstV clades have been propagated in transformed immortalized cell lines such as A549, Caco-2, HEK293T and Huh7.5, we chose HIE because they better mimic the human intestine and thus are more physiologically relevant. Additionally, HIE support the replication of all HAstV clades including clinical samples, thus making HIE a valuable potential universal model to study HAstV biology.
0 Q&A 4063 Views May 20, 2020
Physical avoidance of pathogens is a crucial defense strategy used by the host to reduce pathogen infection. Hosts display the use of multiple strategies to sense and avoid pathogens, ranging from olfaction to sensing of damage caused by pathogen infection. Understanding various mechanisms of pathogen avoidance has the potential to uncover conserved host defense responses that are important against pathogen infections. Here, we describe protocols for studying pathogen lawn avoidance behavior as well as a change of bacterial preferences in the model nematode Caenorhabditis elegans. Besides, we describe the protocol for measuring preferences for pathogenic and nonpathogenic bacteria after training of the animals on pathogenic bacteria. These assays can be implemented in discovering various mechanisms of host learning that result in the avoidance of pathogens.
0 Q&A 7709 Views May 5, 2020
Screening with CRISPR/Cas9 technology has already led to significant discoveries in the fields of cancer biology, cell biology and virology. Because of the relatively low false discovery rates and the ability to perform high-throughput, pooled approaches, it has rapidly become the assay of choice for screening studies, including whole-genome screens. Here, we describe a CRISPR screening protocol that allows for efficient screening of the entire life cycle of HIV-1 through packaging of the HIV-CRISPR lentiviral genomes by infecting HIV-1 virus in trans.
0 Q&A 3910 Views Mar 5, 2020
The study of host-pathogen interactions has improved our understanding of both pathogenesis and the response of the host to infection, including both innate and adaptive responses. Neutrophils and macrophages represent the first line of innate host defense against any infection. The zebrafish is an ideal model to study the response of these cells to a variety of pathogens. Zebrafish possess both neutrophils and macrophages exhibiting similar defense mechanisms to their human counterparts. The transparency of zebrafish embryos greatly facilitates in vivo tracking of infection dynamics in a non-invasive manner at high-resolution using labelled pathogens, while immune cells can also be labelled transgenically to enable even more in-depth analysis. Here we describe a procedure for performing a bacterial infection assay in zebrafish embryos using fluorescently-labelled E. coli bacteria and demonstrate the monitoring and quantification of the infection kinetics. Of note, this procedure helps in understanding the functional role of genes that are important in driving the innate immune response.
0 Q&A 4397 Views Dec 20, 2019
Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is a devastating pest of palm trees worldwide. RPW gut is colonized by diverse bacterial species which profoundly influence host development and nutritional metabolism. However, the molecular mechanisms behind the interactions between RPW and its gut microbiota remain mostly unknown. Antibiotics are usually employed to remove gut bacteria to investigate the impact of gut bacteria on insect fitness. However, administration of antibiotics cannot thoroughly remove gut bacteria for most insect species. Therefore, establishing germfree (GF) organisms is a powerful way to reveal the mutual interactions between gut bacteria and their insect hosts. Here, we describe a protocol to generate and maintain RPW GF larvae, being completely devoid of gut bacteria in laboratory. RPW GF larvae were established from the dechorionated fresh eggs which were reared on the sterilized artificial food under axenic conditions. The establishment of GF larvae set a solid foundation to deeply elucidate the molecular mechanisms behind the interactions between RPW and its gut microbiota.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.