Ion identity molecular networking statistics on all datasets were extracted with a new MZmine module and exported to a comma-separated file (csv) for evaluation in Microsoft Excel. The module is included in the special IIMN build of MZmine. All available statistics were based on the spectral input file (mgf) and the resulting network file (graphml), which was downloaded from the dataset’s corresponding GNPS results page. The graphml file contains all ion identity molecular networking results, namely, the nodes representing individual features and the edges between nodes. The mgf spectral summary file contains the corresponding MS2 spectrum for each feature node. While classical MN and FBMN depend on MS2 data for each node, IIN creates new MS1-based edges that might include nodes without an MS2 spectrum in the resulting network. For a comparison between FBMN and IIMN, only nodes present within both networks (with an MS2 spectrum) are considered. A statistical summary and in-depth statistics on each dataset are provided in a supplementary Microsoft Excel workbook (Supplementary Data 1). Excerpts are summarized in Supplementary Table 2, and the different statistical measures and metadata items are described in Supplementary Table 5. One important measure is the identification density, i.e., all identified nodes and nodes with a maximum distance of n edges to at least one identified compound. Supplementary Figure 5 highlights how the additional edges of ion identity networking increase the identification density in the datasets, measured over a maximum distance of 1–5 edges. The increased density over one edge reflects the new links between unidentified to an identified node by IIN edge. The identification density is increased for 21 datasets, two datasets with poor identification rates exhibit no change, and one dataset lacks identifications. The maximum identification density increase of +8% over one edge results in a total of 42% of the nodes being either identified or directly linked to an identified compound. The network of the corresponding dataset, i.e., the post-column salt infusion study, contains a total of 22% identified nodes and 25% nodes with ion identity and MS2 spectrum in 134 ion identity networks. Ion identity molecular networking decreased the number of unconnected singleton nodes by −12% to a total of 42%. Filtering out nodes with poor MS2 spectra with less than four signals, which was used as the minimum number of signals for the library matching and FBMN networking, decreases the number of unconnected singleton nodes further to 29%. Consequently, the network contains many nodes without a match to any library or experimental spectra. Collapsing all nodes with IIN edges into molecular nodes reduces the total network size by −20%, which significantly reduces the overall redundancy and facilitates network visualization and analysis.

To extract the same statistics on any results from IIMN, download the networking results as a graphml file from a GNPS job page and use the mgf file of that analysis. The special MZmine IIMN build offers two modules in the Tools tab. More information and the latest IIMN enabled MZmine version are available (

GNPS results analysis (IIMN + FBMN)

For a single analysis

This tool also offers the extraction of new spectral library entries

GNPS results analysis (IIMN + FBMN) of all sub

For multiple analyses at once

Generates statistics for each subfolder with exactly one graphml and mgf file (names do not have to match)

Note: The content above has been extracted from a research article, so it may not display correctly.

Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.