All RLK full-length amino acid sequences in Arabidopsis were downloaded from UniProt (https://www.uniprot.org/) and these sequences were used as queries to perform a BLASTP search against A. duranensis RLKs by NCBI (https://www.ncbi.nlm.nih.gov/). These resulting sequences were then used as new queries to conduct a BLASTP search again in PEANUT GENOME RESOURSE (http://peanutgr.fafu.edu.cn/), to avoid missing potential members. The redundant entries were removed manually. Then the resulting unique sequences were analysed with both SMART (http://smart.embl-heidelberg.de) [65] and NCBI’s Conserved Domains Database (CDD; http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to ensure the presence of the RLK domains in newly identified members. Only proteins containing at least one kinase domain were considered putative AhRLKs, and 1311 AhRLKs were finally obtained. The amino acid residue base, and molecular weight were predicted with ExPaSy ProtParam tool (https://web.expasy.org/protparam/). The genome sequence, protein sequences and genome annotation of the peanut were performed according to PEANUT GENOME RESOURSE (http://peanutgr.fafu.edu.cn/).

Note: The content above has been extracted from a research article, so it may not display correctly.



Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.