As well as identifying genes automatically via our initial annotation, we manually identified target genes using tBLASTn (Altschul et al., 1990) searches. We used gene sequences of known homology downloaded from the NCBI nr database (particularly those of T. castaneum; Van der Zee et al., 2008) and from NasoniaBase (Munoz-Torres et al., 2011; Nvit_2.1 where possible), as well as those identified in Kenny et al., 2014 as queries against standalone databases for both G. bimaculatus and O. fasciatus (GCA_000696205.2, Ofas_2.0) using BLAST 2.2.29+ on a local server. These putatively identified genes were reciprocally BLASTed against the online NCBI nr database using BLASTx to confirm their identity. Novel sequences thus putatively identified were then aligned to sequences of known homology using MAFFT v7 (Katoh et al., 2019). The resulting alignments were then subjected to Bayesian analysis in MrBayes v3.2.6 x64 (Ronquist and Huelsenbeck, 2003). The model jumping setting was used, selecting substitution models proportionally to posterior probability. Markov chain Monte Carlo searches were run for 1,000,000 generations with sampling every 100 generations, or for as many generations as required for the average standard deviation of split frequencies to be less than 0.01. The first 25% of generations were discarded as burn-in. Trees were then visualised in FigTree (Rambaut, 2012) for annotation and display.

Note: The content above has been extracted from a research article, so it may not display correctly.

Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.