The design of the soil column experiments was described in detail by Vetterlein et al. (2020b). Briefly, loamy soil (L) substrate, which was classified as Haplic Phaeozem, consisted of 32.5% sand, 47.9% silt, and 19.5% clay (Supplementary Table 1). Inorganic carbon was not detectable; therefore, total carbon was assumed to represent the organic carbon content with 8.6 g kg–1 Corg. The nitrogen content was 0.84 g kg–1 Norg, resulting in a C:N ratio of 10.2. Soil pH (CaCl2) was 6.4. The substrate sand (S) was obtained by mixing L with quartz sand in 83.3%:16.7% ratio. The reason for mixing loamy soil (L) substrate with quartz sand was to yield two substrates with different textures but the same microbial inoculate (of the original soil). To enable similar nutrient uptake of maize on both substrates, loam and sand were fertilized differently according to Vetterlein et al. (2020b). Like for barley, root hair formation, and elongation mutants have also been constructed for maize (Hochholdinger and Tuberosa, 2009), which we used here to investigate maize root hair formation induced changes in rhizosphere acdS community composition. Zea mays root hair defective mutant rth3 and the corresponding B73 wildtype (Wen and Schnable, 1994; Hochholdinger et al., 2008) seeds were propagated at the experimental station Endenich of the Faculty of Agriculture of the University of Bonn. The monogenic mutant rth3 is transposon induced and shows normal root hair initiation but disturbed elongation (Hochholdinger et al., 2008).

Note: The content above has been extracted from a research article, so it may not display correctly.



Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.