The ORF of MaMAPK3 was in frame with the GFP N-terminus and C-terminus, and no signal was detected in the MaMAPK3-GFP fusion construct, the signal of GFP-MaMAPK3 was used. The full-length cDNA of MaMAPK3 was subcloned into the pMD18-T vector (TaKaRa). Plasmid pMD18-T containing MaMAPK3 was amplified using primers GSP3 (Table S5) containing Sal I and ClaI restriction sites to assess the subcellular localization of MaMAPK3. The ORF of MaICE1 was in frame with the GFP N-terminus and C-terminus, and no signal was detected in the MaICE1-GFP fusion construct, the signal of GFP-MaICE1 was used. The full-length cDNA of MaICE1 was subcloned into the pMD18-T vector (TaKaRa). Plasmid pMD18-T containing MaICE1 was amplified using primers GSP4 (Table S5) containing Sal I and ClaI restriction sites to assess the subcellular localization of MaICE1. The PCR product was digested with the above-mentioned enzymes and introduced into the pUC19-GFP vector harboring the GFP reporter gene to generate the fusion construct under the control of the cauliflower mosaic virus 35S promoter (CaMV 35S). The fusion construct and the control vector (pUC19-GFP) were separately introduced into Cavendish banana protoplast as previously described [66]. Images were captured from transiently transformed rice protoplast cells grown at 28 °C using a confocal laser-scanning microscope (LAM510, Carl Zeiss GmbH, Jena, Germany) and analyzed by Image-Pro software.

Note: The content above has been extracted from a research article, so it may not display correctly.



Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.