All surgical procedures were performed by a single orthopedic surgeon (Junwu Shi). The standard anterolateral and anteromedial approaches to expose the knee joint were made using an arthroscopic system (Smith & Nephew, Andover, MA, USA) with a 30° lens (4 mm). The lumen of the knee joint was examined to check for cartilage and meniscus injuries. One case was complicated by an osteochondral injury to the weight-bearing surface of the medial femoral condyle and underwent microfracture repair [14]. Additionally, two cases were complicated by a longitudinal fissure of the posterior horn of the medial meniscus and underwent a one-stage repair using the FasT-Fix meniscal repair suture system (Smith & Nephew, Andover, MA, USA). Sharp debridement and scar tissue removal around the fracture was carried out, and fracture fragments were reduced using a probe to achieve a congruent articular surface.

Furthermore, in cases of old ACL avulsion fractures, the tibial bed was deepened using a grinding drill. A good reduction was generally obtained. In the case of a poor reduction, free fracture fragments were cleared. Alternatively, the contractural ACL was released moderately (Fig. (Fig.33a).

Intraoperative images a Displaced tibial eminence fracture under arthroscope. b, c The internal anchors were placed at the posterior internal and posterior outer edges of the avulsed fracture fragment. d, e Sutures were passed through the tendon-bone transitional zone adjacent to the fracture fragment. f Arthroscopic knot fixation. g Two external anchors were implanted. h Final suture bridge construct with suture limbs passing over surface of reduced tibial spine fracture

A 15G spinal needle was placed through the anterolateral approach to test the angle of the screw placement, with an optimal angle of approximately 45° with the tibial plateau, as to obtain the best ‘dead angle’ and reduce the risk of pullout (Fig. (Fig.3b,3b, c). Following osseous foramen drilling with a mouth-gag, two internal anchors (Arthrex, Naples, USA) were placed at the posterior internal and posterior outer edges of the avulsed fracture fragment (Fig. (Fig.2a).2a). Two anchors were sufficient in general, one was located at the 2 o’clock point of the bony bed rim and the other was at the 10 o’clock point by taking the arthroscopic field as the reference (Fig. (Fig.2b).2b). After placement of the proximal anchors, eight strands of sutures were smoothly passed through the tendon-bone transitional zone adjacent to the fracture fragment of the ACL insertion using a threader (Fig. (Fig.3d,3d, e). Then the sutures were fixed at the tendon-bone junction using a SMC knot secured using a knot-tying device through arthroscopy (Fig. (Fig.3f).3f). Next, two strands of sutures were mutually crossed and fixed to the anterolateral tibial slope with an external anchor (Arthrex, Naples, USA). Similarly, two further strands of sutures were mutually crossed and fixed to the anteromedial tibial slope with an external anchor (Arthrex, Naples, USA) (Fig. (Fig.2c).2c). An incision reduction of the avulsed fracture fragment was performed with the assistance of a probing hook through the patellar anterior median approach. After adjusting the external anchor position, tightening the suture and fixing the external anchor (Fig. (Fig.3g),3g), a satisfactory fracture reduction was confirmed through arthroscopy (Fig. (Fig.33h).

a Two internal anchors were placed at the posterior internal and posterior outer edges of the avulsed fracture fragment with an optimal angle of approximately 45° with the tibial plateau; b One internal anchor was located at the 2 o’clock point of the bony bed rim and the other was at the 10 o’clock point by taking the arthroscopic field as the reference; c Two strands of sutures were mutually crossed and fixed to the anterolateral tibial slope with an external anchor

Note: The content above has been extracted from a research article, so it may not display correctly.



Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.