Also in the Article



Anatomical and taxonomic determination of mammalian and bird remains were carried out in the Zooarcheological and Taphonomical Laboratory of the Catalàn Institute of Human Paleoecology and Social Evolution (IPHES). Avian reference collections from the Nat-Museu de Ciències Naturals de Barcelona in Barcelona, Muséum National d’Histoire Naturelle in Paris, Laboratório de Arqueociências—LARC-DGPC in Lisbon, Estación Biológica de Doñana in Seville, and Naturhistorisches Museum Wien were used for comparative purposes. The osteological measurements were taken using a digital caliper with a precision of two decimal places in six specified anatomical points: proximodistal length (L), proximal mediolateral width (BP), mediolateral width at midshaft (SD), distal mediolateral width (Bd1), distal mediolateral width at the beginning of the trochlea (Bd2), proximal dorsopalmar height (Bapp), and the distal dorsopalmar height at the beginning of the trochlea (Badp). The comparative data can be consulted in table S4. Bone surfaces of all faunal remains were inspected macroscopically and microscopically with a stereomicroscope (OPTHEC, 120 Hz model), using magnifications from ×15 to ×45.

Cut marks and their relationship with specific butchering activities were identified on the basis of the criteria of Domínguez-Rodrigo et al. (28) and Romandini et al. (15). In addition, 3D reconstructions of the marks were carried out following the methodological protocol established by Courtenay et al. (48). This approach digitalizes each trace using the HIROX KH-8700 3D Digital Microscope with an MXG-5000REZ triple objective revolving lens. First, cross sections of each mark were produced using the midrange lens at a ×600 magnification. A fixed high-intensity light-emitting diode light source was placed above each sample, combining the use of coaxial and ring illumination. 3D digital reconstructions were produced using a combination of quick auto focus and depth synthesis functions that are provided by the HIROX’s system, generating a 3D display of each mark where measurements could be taken and cross-section profiles could be extracted. To construct each digital image, between 110 and 130 photos were taken for each profile. The capturing and assessment of the morphology of each mark’s profile were carried out using a total of three cross sections, taken at 30, 50, and 70% of the total length of each mark. As described by Maté González et al. (30), this range along the groove is suggested to be the most representative for cut mark morphological analysis.

These profiles were then exported to the free tpsDig2 (v.2.1.7) software where the allocation of seven homologous landmarks was carried out following the geometric morphometric models described by Maté González et al. (30). The resulting files produced through landmark allocation were then edited and imported into the free software R [www.r-project.org; (49)], where a full Procrustes fit was performed using the Geomorph library (50). This package can be used to prepare the sample for multivariate statistical analysis and is commonly referred to as a generalized Procrustes analysis (GPA). Through GPA, each individual is standardized through a series of superimposition procedures involving the translation, rotation, and scaling of each shape. Any differences in structure can thus be studied through patterns of variation and covariation, which can then be statistically assessed (51). The library Shapes (52) was then used to calculate and plot the mean shape of each cross section. Additional measurements concerning the depth and opening angle of each of the profiles were later taken. To capture the entire shape of these incisions, further digital reconstruction was carried out on the entire mark using the low-range lens at ×100 or ×150 magnification, depending on the necessities of the analyst with regard to resolution (48). To capture the entire length of each mark, the HIROX’s tiling function was used to create a mosaic and complete digital reconstruction of each groove. Thirty photos were taken for each tile, while any number between 15 and 32 tiles was used to create the final image. With the use of a high-pixel resolution and the consequential stacking of photos produced by the microscope, the entire shape of the taphonomic trace could be reproduced digitally. A 13-landmark model, as developed by Courtenay et al. (53), was then used to capture the entire shape of the groove. The position of each landmark was recorded through a series of measurements. This was done first using the “xy-width” function to measure and plot the location of each landmark across a 2D graph, followed by the measurement of depth using the “point height” function to establish each landmark’s position along the z-axis of a 3D plot. Landmark coordinates were recorded and processed in the same manner as the 2D profiles.

Note: The content above has been extracted from a research article, so it may not display correctly.



Also in the Article

Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.