First, a nickel conductive tape was used to fabricate well-designed flexible conductive path through a facile digital laser processing technique. SilkNCT was clipped into small round pieces. Then, the flexible conductive path was transferred onto a flexible PET substrate. Traditional three-electrode configuration was constructed for amperometric sensors with the clipped SilkNCT (obtained at 900°C) pieces for working electrodes, SilkNCT (obtained at 1050°C) pieces as counter electrodes, and the Ag/AgCl ink–modified conductive tape as reference electrodes. SilkNCT obtained at 1050°C was selected as the counter electrode due to its relatively higher electrical conductivity compared with SilkNCT obtained at lower temperature. The two-electrode system, with the small SilkNCT (obtained at 900°C) piece as the working electrode and Ag/AgCl as the reference electrode, was designed for ion-selective sensors. Considering the low concentration of biomarkers in sweat, we designed the final electrode with a diameter of 3 mm to obtain a high current. After the sensor array design was finished, Ecoflex was used as an insulating layer to prevent the possible electrical contact of the conductive path with skin and sweat.

Note: The content above has been extracted from a research article, so it may not display correctly.



Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.