Also in the Article



The optical images were obtained with an upright optical microscope (Nikon Eclipse Ni-U). Infrared spectra were recorded on a Fourier transform infrared spectrometer (PerkinElmer Spectrum Two, equipped with a Universal ATR sampling accessory and diamond crystal; PerkinElmer Instruments, The Netherlands). Transmission spectra were recorded at room temperature in the range from 4000 to 650 cm−1 at a resolution of 4 cm−1 and with an accumulation of 16 scans. A sample of free-standing siloxane oligomer film was placed on the crystal. To achieve good contact between the sample and the crystal, force was applied on top of the sample. The semicrystalline properties of the elastomers were examined under a polarizing optical microscope (Carl Zeiss microscope, Axioplan2 imaging) and an x-ray diffraction analysis instrument (Bruker AXS, D2 PHASER). Photographs of the membrane were taken using a digital camera (Nikon DSVR). The healing process was recorded with an upright optical microscope (Nikon Eclipse Ni-U). Mechanical tensile stress tests were performed using INSTRON-5566 based on the ASTM D2256 standard. For mechanical tensile stress tests, a sample size of 40 mm length × 5 mm width × 2 mm height, a gauge length of 10 mm, and a strain rate of 10 mm min−1 were adopted. The test was repeated at least three times, and the average values were recorded. Young’s modulus was determined from the initial slope of the stress-strain curves. Dynamic mechanical analysis (DMA) was conducted with TA instruments (Q800 DMA). For self-healing tests, the polymer film was crosscut and then heated at 90°C for 15 min for healing. Depth-sensing indentation measurements were performed by indentation at room temperature with a maximum depth of 1100 nm at a loading and unloading rate of 1100 nm min−1. Before each measurement, a height calibration of the local sample surface was performed. Unloading curves were used to determine the elastic modulus according to the Oliver and Pharr model using CSM nanoindentation software (56). Contact angle and CAH measurements were carried out with OCA 20 equipment (Data Physics, Germany) under ambient conditions. To measure the CAH, the surface was tilted with respect to the horizontal plane until the liquid droplet started to slide along the surface. Then, advancing (θAdv) and receding (θRec) contact angles were measured by a single 10-μl droplet of liquid with tilt angles of less than 10° unless otherwise specified. Each reported contact angle or CAH was an average of at least 10 independent measurements. XPS was performed with a Scanning Auger XPS (PHI5802). AFM measurements were performed on a bioscope catalyst AFM (Bruker) using Si3N4 tips (DNP-B, Bruker) in the PeakForce quantitative nanomechanical property mapping mode. For shear strength tests, the siloxane oligomer grind was heated to yield a viscous material, subsequently deposited onto a substrate. The deposition area was fixed as 1.00 cm2. After the deposition, another substrate was used to hot-press the deposited siloxane oligomer material. The thickness of the supramolecular polymer between the two substrates was 0.2 mm. The shear strength tests were performed with INSTRON-5566. The two substrates adhered between two fixtures in a vertical direction. The strain rate applied was 10 mm min−1, and the data were recorded in real time.

Note: The content above has been extracted from a research article, so it may not display correctly.



Also in the Article

Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.