Bioprinting of spheroids was used with a MakerBot Replicator 1 3D printer (MakerBot, NY). The extrusion head was removed, and a holder for a pipette and two microvalve heads was 3D-printed using an Ultimaker 2 (Ultimaker) 3D printer. To control the 3D motion stage, a smoothie board (Uberclock, OR) was integrated. The reader is referred to the Supplementary Materials for the details on the construction of the AAB platform.

For fabrication of support constructs, microvalves (INKX0517500A, Lee Company, Bashville, TN) with 250-μm nozzles (INZA3100914K, Lee Company) were integrated on the bioprinter head. To operate microvalves, a control board (IECX0501350A, Lee Company) was used, which was controlled using Arduino Uno (Arduino, Italy). To cross-link sodium alginate, a portable ultrasonic humidifier (CZHD20, Comfort Zone, China) was used to generate the aerosol form of CaCl2. Details about the bioprinter setup—including the computer aided design model (fig. S1D), block diagram (fig. S1E), and computer interface (fig. S20)—can be found in the Supplementary Materials.

Note: The content above has been extracted from a research article, so it may not display correctly.

Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.