Overlap of the genetic makeup of early growth traits with adult and childhood phenotypes
AA Alexessander Couto Alves NS N. Maneka G. De Silva VK Ville Karhunen US Ulla Sovio SD Shikta Das HT H. Rob Taal NW Nicole M. Warrington AL Alexandra M. Lewin MK Marika Kaakinen DC Diana L. Cousminer ET Elisabeth Thiering NT Nicholas J. Timpson TB Tom A. Bond EL Estelle Lowry CB Christopher D. Brown XE Xavier Estivill VL Virpi Lindi JB Jonathan P. Bradfield FG Frank Geller DS Doug Speed LC Lachlan J. M. Coin ML Marie Loh SB Sheila J. Barton LB Lawrence J. Beilin HB Hans Bisgaard KB Klaus Bønnelykke RA Rohia Alili IH Ida J. Hatoum KS Katharina Schramm RC Rufus Cartwright MC Marie-Aline Charles VS Vincenzo Salerno KC Karine Clément AC Annique A. J. Claringbould CD Cornelia M. van Duijn EM Elena Moltchanova JE Johan G. Eriksson CE Cathy Elks BF Bjarke Feenstra CF Claudia Flexeder SF Stephen Franks TF Timothy M. Frayling RF Rachel M. Freathy PE Paul Elliott EW Elisabeth Widén HH Hakon Hakonarson AH Andrew T. Hattersley AR Alina Rodriguez MB Marco Banterle JH Joachim Heinrich BH Barbara Heude JH John W. Holloway AH Albert Hofman EH Elina Hyppönen HI Hazel Inskip LK Lee M. Kaplan AH Asa K. Hedman EL Esa Läärä HP Holger Prokisch HG Harald Grallert TL Timo A. Lakka DL Debbie A. Lawlor MM Mads Melbye TA Tarunveer S. Ahluwalia MM Marcella Marinelli IM Iona Y. Millwood LP Lyle J. Palmer CP Craig E. Pennell JP John R. Perry SR Susan M. Ring MS Markku J. Savolainen FR Fernando Rivadeneira MS Marie Standl JS Jordi Sunyer CT Carla M. T. Tiesler AU Andre G. Uitterlinden WS William Schierding JO Justin M. O’Sullivan IP Inga Prokopenko KH Karl-Heinz Herzig GS George Davey Smith PO Paul O'Reilly JF Janine F. Felix JB Jessica L. Buxton AB Alexandra I. F. Blakemore KO Ken K. Ong VJ Vincent W. V. Jaddoe SG Struan F. A. Grant  SS Sylvain Sebert  MM Mark I. McCarthy  MJ Marjo-Riitta Järvelin

To gain insights into the potential overlap in the genetic makeup of early growth traits with adult and childhood phenotypes, we searched databases and the literature for the phenotypic implications of our four GWAS SNPs. First, we retrieved from the Gene Atlas (9) PheWAS in the UK Biobank data all phenotypic associations (P < 5 × 10−8) with our four GWAS SNPs (table S4). Second, we retrieved from the PhenoScanner (10) database all SNPs in the literature with phenotypic associations (P < 5 × 10−8) and in high LD (R2 > 0.8) with our four GWAS lead variants (table S5). Third, we systematically searched in the GWAS catalog (48) database all SNPs with phenotypic associations (P < 5 × 10−8) in the chromosomal regions of our four GWAS lead variants.

Note: The content above has been extracted from a research article, so it may not display correctly.



Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.