The graphene nanosheets with a certain oxidization degree (26.1%) were prepared on the basis of previously established methods (31, 32). In particular, following extensive sonication at high power for a total time period of 8 hours in the ice, the GO solutions were ultracentrifuged at 300,000g for 4 hours (Thermo Sorvall WX 100), and the ultrasmall GOs were acquired by discarding the centrifugation sediments while preserving the supernatant. The minimum and maximum radii of the SW rotor, i.e., Rmin and Rmax, are 66.7 and 158.8 mm, respectively. The vesicle density for GO is calculated to be 1.02. The online calculator showed that the cutoff size is 57 nm for the maximum 300,000g after 4 hours. To concentrate the GO nanosheets, the ultrafiltration process was required, and the GO samples were diluted in ultrapure water.

Cryo-TEM was used to provide further evidence of the sandwiched graphene-membrane superstructure. Primarily, lipid bilayer vesicles were formed from a dry film of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) via a miniextruder (100 nm of polycarbonate porous membrane). Afterward, the lipid bilayers and GO were mixed at a ratio of 5.6:1 and incubated for 2 hours at 20°C. By using a FEI Vitrobot rapid-plunging device, a 3.5-μl mixture solution was flash-frozen on a Quantifoil support foil after 3 s of blotting with filter paper. Then, the frozen-hydrated grids were transferred to liquid nitrogen before imaging. Cryo-TEM images were acquired by a FEI Talos F200C TEM (200 kV) at 36,000× magnification (with a pixel size about 0.328 nm) and under low–electron dose conditions.

Note: The content above has been extracted from a research article, so it may not display correctly.

Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.