A thicker film was used for the grabber than the other devices to make it more rigid. DiAPLEX (0.4 g) was dissolved in 10 ml of THF and poured into a circular PTFE mold (d = 5 cm) to prepare a DiAPLEX thin film by solvent casting (zero applied magnetic field). Scissors were used to define six tapered arms with a length of 1.6 cm and widths of 0.7 cm at the fixed end and 0.4 cm at the mobile end. Two hinges were manually folded in each arm at distances of 0.5 and 1.0 cm from the end to mimic phalanges and joints in human fingers. A small piece of a DiAPLEX film of thickness ~100 μm and with the same shape as the last segment with 28.6 wt % loading of MMPs was attached with double-sided tape on top of the last segment of each arm to enhance the response to magnetic fields. To facilitate mounting and dismounting on the housing of the LED, a 3D-printed holder was constructed that held two glass slides separated by a gap of 3 mm, which reduced direct thermal heating of the grabber by the LED. One glass slide was attached to the LED, and the other was attached to the grabber. The blueberries used in the experiment have masses of 1.398 and 1.553 g, and the cherry tomatoes have masses of 3.161 and 3.166 g.

Note: The content above has been extracted from a research article, so it may not display correctly.



Q&A
Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.