Following (5), we projected changes to the biomass and MCP of fish species under two contrasting climate change scenarios characterized by Representative Concentration Pathways (RCPs). The RCP 2.6 is a strong mitigation greenhouse gas emission scenario, which, by the end of the 21st century, is projected to lead to a net radiative forcing of 2.6 Wm−2. The RCP 8.5 is a high business-as-usual greenhouse gas emission scenario that projects a net radiative forcing of 8.5 Wm−2 by the end of this century. We projected the results using a DBEM and an ensemble of ESMs consisting of a GFDL-ESM2M model from National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory (GFDL) (9), IPSL-CM5LR model from the Institut Pierre Simon Laplace (IPSL) (10), and MPI-ESM from the Max Planck Institute for Meteorology (MPI-M) (11) to estimate the uncertainties associated with the physical and biogeochemical components of climate change. These models were used as the basis for estimating the changes in MCP. Note that our underlying assumption is that the MCP is fully fished, i.e., MCP equals the supply of fish on the market. It should be noted that this assumes away fishing effort dynamics, although we are aware that different profit margins in different fisheries would induce different behavioral responses of fishers.

We chose two temperature benchmarks, i.e., 1.5° and 3.5°C warming relative to preindustrial levels, as our warming target scenarios. Under the 1.5°C warming scenario, we assumed that the Agreement is successfully implemented, limiting global warming to 1.5°C relative to the preindustrial levels. We used RCP 8.5 and 2.6 scenarios to trace the year at which the target atmospheric temperatures (i.e., 1.5° or 3.5°C) are achieved under each of these models (table S3). The models simulate how changes in temperature, oxygen content (represented by O2 concentration), net primary production, and other variables, such as ocean current patterns, salinity, and sea ice extent, would affect growth, production, and distribution of marine fishes and invertebrates (25) in the year at which the target temperature is achieved. Fishing mortality is assumed to be the level required to achieve maximum sustainable yield to simulate MCP. With this information, changes in FB and potential catch, relative to the average level from 2001 to 2010, of each taxon reported in official statistics, in each maritime country, were computed. Then, the changes in FB and MCP were estimated for each model when the atmospheric surface temperature is 1.5° and 3.5°C warmer than the preindustrial level.

We assumed full adaptation to and utilization of new species in our analysis. For example, when a new species emerges in an Exclusive Economic Zone of a country, we assume that a fishery will be developed to capture possible economic benefits and jobs. However, it would only be included in the analysis if it ranked in the top 10 by landed value for each country.

Note: The content above has been extracted from a research article, so it may not display correctly.

Please log in to submit your questions online.
Your question will be posted on the Bio-101 website. We will send your questions to the authors of this protocol and Bio-protocol community members who are experienced with this method. you will be informed using the email address associated with your Bio-protocol account.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.