Molecular Biology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 542 Views Aug 5, 2023

Study of gene function in eukaryotes frequently requires data on the impact of the gene when it is expressed as a transgene, such as in ectopic or overexpression studies. Currently, the use of transgenic constructs designed to achieve these aims is often hampered by the difficulty in distinguishing between the expression levels of the endogenous gene and its transgene equivalent, which may involve either laborious microdissection to isolate specific cell types or harvesting tissue at narrow timepoints. To address this challenge, we have exploited a feature of the Golden Gate cloning method to develop a simple, restriction digest–based protocol to differentiate between expression levels of transgenic and endogenous gene copies. This method is straightforward to implement when the endogenous gene contains a Bpi1 restriction site but, importantly, can be adapted for most genes and most other cloning strategies.


Key features

• This protocol was developed to determine the expression level of an ectopically expressed transcription factor with broad native expression in all surrounding tissues.

• The method described is most directly compatible with Golden Gate cloning but is, in principle, compatible with any cloning method.

• The protocol has been developed and validated in the model plant Arabidopsis thaliana but is applicable to most eukaryotes.


Graphical overview


0 Q&A 398 Views Jul 20, 2023

Virus-mediated transient gene overexpression and gene expression silencing can be used to screen gene functions in plants. Sugarcane mosaic virus (SCMV) is a positive strand RNA virus in the Potyviridae family that has been modified to be used as vector to infect monocots, including maize (Zea mays), for transient gene overexpression and gene expression silencing. Relative to stable transformation, SCMV-mediated transient expression in maize has the advantages of being faster and less expensive. Here, we describe a protocol for cloning constructs into the plasmid vector pSCMV-CS3. After maize seedlings are transformed with pSCMV-CS3 constructs by particle bombardment, the virus replicates and spreads systemically in the plants. Subsequent infections of maize seedlings can be accomplished by rub inoculation with sap from SCMV-infested plants. As an example of a practical application of the method, we also describe virus-induced gene silencing (VIGS) of fall armyworm (Spodoptera frugiperda) gene expression. Transgenic viruses are created by cloning a segment of the fall armyworm target gene into pSCMV-CS3 prior to maize transformation. Caterpillars are fed on the virus-infected maize plants, which make dsRNA to silence the expression of the fall armyworm target gene after ingestion. This use of SCMV for plant-mediated VIGS in insects allows rapid screening of gene functions when caterpillars are feeding on their host plants.


Graphical overview


0 Q&A 1445 Views Dec 20, 2022

CRISPR/Cas9 screening has revolutionized functional genomics in biomedical research and is a widely used approach for the identification of genetic dependencies in cancer cells. Here, we present an efficient and versatile protocol for the cloning of guide RNAs (gRNA) into lentiviral vectors, the production of lentiviral supernatants, and the transduction of target cells in a 96-well format. To assess the effect of gene knockouts on cellular fitness, we describe a competition-based cell proliferation assay using flow cytometry, enabling the screening of many genes at the same time in a fast and reproducible manner. This readout can be extended to any parameter that is accessible to flow-based measurements, such as protein expression and stability, differentiation, cell death, and others. In summary, this protocol allows to functionally assess the effect of a set of 50–300 gene knockouts on various cellular parameters within eight weeks.


Graphical abstract


0 Q&A 979 Views Dec 20, 2022

Cloning systems like Gateway and Golden Gate/Braid are known because of their efficiency and accuracy. While the main drawback of Gateway is the expensive cost of the enzymes used in its two-step (LR and BP) reaction, Golden Gate requires non-reusable components due to their specific restriction sites. We present the Brick into the Gateway (BiG) protocol as a new cloning strategy, faster and more economic method that combines (i) reusable modules or bricks assembled by the GoldenBraid approach, and (ii) Gateway LR reactions [recombination of attachment sites: attL (L from left) and attR (R from right)] avoiding the BP reaction [recombination of attachment sites: attP (P from phage) and attB (B from bacteria)] usually necessary in the Gateway cloning. The starting point is to perform a PCR reaction to add type IIS restriction sites into DNA fragments generating specific fusion sites. Then, this PCR product is used to design GoldenBraid bricks, including the attL Gateway recombination sites. Using the Golden Gate method, these bricks are assembled to produce an attL1–gene of interest–attL2 fragment, which is integrated into a compatible vector producing a Gateway entry vector. Finally, the fragment containing the target gene is recombined by LR reaction into the Gateway destination vector.


Graphical abstract


0 Q&A 1435 Views Mar 20, 2022

The human proteins used in most biochemical studies are commonly obtained using bacterial expression. Owing to its relative simplicity and low cost, this approach has been extremely successful, but is inadequate for many proteins that require the mammalian folding machinery and posttranslational modifications (PTMs) for function. Moreover, the expressed proteins are typically purified using N- and/or C-terminal affinity tags, which are often left on proteins or leave non-native extra amino acids when removed proteolytically. Many proteins cannot tolerate such extra amino acids for function. Here we describe a protein production method that resolves both these issues. Our method combines expression in human Expi293F cells, which grow in suspension to high density and can process native PTMs, with a chitin-binding domain (CBD)-intein affinity purification and self-cleavable tag, which can be precisely removed after purification. In this protocol, we describe how to clone a target gene into our specifically designed human cell expression vector (pJCX4), and how to efficiently transfect the Expi293F cells and purify the expressed proteins using a chitin affinity resin.


Graphic abstract:



0 Q&A 3779 Views Sep 20, 2021

Identification of novel genes and their functions in rice is a critical step to improve economic traits. Agrobacterium tumefaciens-mediated transformation is a proven method in many laboratories and widely adopted for genetic engineering in rice. However, the efficiency of gene transfer by Agrobacterium in rice is low, particularly among japonica and indica varieties. In this protocol, we elucidate a rapid and highly efficient protocol to transform and regenerate transgenic rice plants through important key features of Agrobacterium transformation and standard regeneration media, especially enhancing culture conditions, timing, and growth hormones. With this protocol, transformed plantlets from the embryogenetic callus of the japonica cultivar ‘Taichung 65’ may be obtained within 90 days. This protocol may be used with other japonica rice varieties.

0 Q&A 6563 Views Aug 20, 2021

pET expression plasmids are widely used in the biotechnology, biopharmaceutical, and basic research sectors for the production of recombinant proteins. Typically, they are used off-the-shelf because they support high production titers; however, we have identified two design flaws in many pET plasmids that limit their production capacity. We used modern methods of DNA assembly and directed evolution to identify improved designs for these modules and demonstrated that these designs support higher protein production yields. Herein, we present two PCR protocols for implementing the designs and increasing protein production from existing pET expression plasmids.



Graphic abstract:



A simple workflow for implementing novel designs in pET expression plasmids.


0 Q&A 4390 Views Apr 5, 2021

CRISPR/Cas9 is an established and flexible tool for genome editing. However, most methods used to generate expression clones for the CRISPR/Cas9 are time-consuming. Hence, we have developed a one-step protocol to introduce sgRNA expression cassette(s) directly into binary vectors (Liu et al., 2020). In this approach, we have optimized the multiplex PCR to produce an overlapping PCR product in a single reaction to generate the sgRNA expression cassette. We also amplified two sgRNA expression cassettes through a single round of PCR. Then, the sgRNA expression cassette(s) is cloned into the binary vectors in a Gateway LR or Golden gate reaction. The system reported here provides a much more efficient and simpler procedure to construct expression clones for CRISPR/Cas9-mediated genome editing. In this protocol, we describe the detailed step-by-step instructions for using this system.

1 Q&A 5430 Views Feb 5, 2021

Histological stains are useful tools for characterizing cell shape, arrangement and the material they are made from. Stains can be used individually or simultaneously to mark different cell structures or polymers within the same cells, and to visualize them in different colors. Histological stains can be combined with genetically-encoded fluorescent proteins, which are useful for understanding of plant development. To visualize suberin lamellae by fluorescent microscopy, we improved a histological staining procedure with the dyes Fluorol Yellow 088 and aniline blue. In the complex plant organs such as roots, suberin lamellae are deposited deep within the root on the endodermal cell wall. Our procedure yields reliable and detailed images that can be used to determine the suberin pattern in root cells. The main advantage of this protocol is its efficiency, the detailed visualization of suberin localization it generates in the root, and the possibility of returning to the confocal images to analyze and re-evaluate data if necessary.

0 Q&A 2979 Views Jul 20, 2020
Potato virus Y (PVY), the type member of the genus Potyvirus (family Potyviridae), is the most widespread virus affecting potato and is included in the top five most economically detrimental plant viruses. Recently, the structure of the PVY virion has been determined by cryo-electron microscopy, which has opened the doors to functional studies that explore the involvement of selected amino acids in different stages of the viral cycle. The only way to functionally challenge in planta the role of particular amino acids in the coat protein of PVY, or in other viral proteins, is by using cDNA clones. The use and manipulation of PVY cDNA clones, unlike those of other potyviruses, has been traditionally impaired by the toxicity that certain sequences within the PVY genome pose to Escherichia coli. Here, we describe the use of a published PVY cDNA clone, which harbours introns that overcome the aforementioned toxicity, to explore the effects of different coat protein modifications on viral infection. The protocol includes manipulation of the cDNA clone in E. coli, biolistic inoculation of plants with the constructed clones, observation of the biological effects on plants, quantification of cDNA clones by reverse transcription quantitative PCR, and confirmation of virion formation by transmission electron microscopy. Future possibilities involve the use of PVY cDNA clones tagged with fluorescent protein reporters to allow further insights into the effects of coat protein mutations on the cell-to-cell movement of PVY virions.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.