The energy is calculated for a given molecule at site rj as a discrete sum including all other molecules (at sites ri) in the considered geometry, according to
with the quadrupole tensor Qi of molecule i and the relative dielectric permittivity (assuming εr = 2.856 for all FnZnPcs). Hereby, qj,k is the fractional excess charge at atom k of the molecule j and rj + τk is its position. The quadrupole tensor and the fractional excess charges are obtained in gas phase for all molecules in their respective relaxed structures. The charge distributions and the resulting quadrupole moments might slightly differ in the film phase due to the surrounding polarisable medium. The film structure was generated according to the crystal structure of CuPc57 (see Supplementary Figs. 1–4). We assume a simplified orthorhombic lattice and take the intermolecular distances (approximately constant 3.8 Å and 13.5 Å) from literature28,30. For face-on geometry, a film thickness of 20 nm implies that we take into account 53 layers along the surface normal. We restrict the summation in lateral directions to a large area of 400 nm × 400 nm, which is sufficient for convergence. For edge-on geometry, we have 15 layers in the direction of the surface normal for a 20 nm film, while the lateral dimension of the integration region is equally big. To investigate the relevant range for the interaction energy, we vary the summation in lateral direction between 10 and 200 nm (Supplementary Fig. 5). In addition, we reduced the thickness of the film in edge-on orientation from 20 to 3 nm and observe an increase of the interaction energy by 10% for ZnPc, in good agreement to the change of IE observed in experiment (Fig. 2d).
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.